首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   1篇
  国内免费   2篇
安全科学   11篇
废物处理   9篇
环保管理   31篇
综合类   39篇
基础理论   23篇
污染及防治   76篇
评价与监测   22篇
社会与环境   2篇
灾害及防治   1篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   1篇
  2014年   7篇
  2013年   20篇
  2012年   12篇
  2011年   17篇
  2010年   11篇
  2009年   12篇
  2008年   15篇
  2007年   11篇
  2006年   7篇
  2005年   12篇
  2004年   9篇
  2003年   5篇
  2002年   6篇
  2001年   12篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
排序方式: 共有214条查询结果,搜索用时 10 毫秒
211.
This study evaluates emission characteristics of volatile organic compounds (VOCs) caused by standing loss (L S) and working loss (L W) of three vertical fixed-roof p-xylene (p-X) liquid tanks during 1-year storage and filling operation. The annual net throughput of the tanks reached 70,446 t, resulting in 9,425 kg of p-X vapor emission including 5,046 kg of L S (53.54 %) and 4,379 kg of L W (46.46 %). The estimated L W of AP-42 displayed better agreement with the measured values of a VOC detector than the estimated L S of AP-42. The L S was best correlated with the liquid height of the tanks, while the L W was best correlated with the net throughput of the tanks. As a result, decreasing vapor space volume of the tanks and avoiding high net throughput of the tanks in a high ambient temperature period were considered as effective means to lessen VOC emission from the fixed-roof organic liquid storage tank.  相似文献   
212.
While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derived to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.  相似文献   
213.
This study assessed volatile organic compound (VOC) emission characteristics from wastewater treatment plants (WWTPs) in five Taiwanese industrial districts engaged in numerous manufacturing processes, including petrochemical, science-based industry (primarily semiconductors, photo-electronics, electronic products and biological technology), as well as multiple manufacturing processes (primarily pharmaceuticals and paint manufacturing). The most aqueous hydrocarbons dissolved in the wastewater of Taiwanese WWTPs were acetone, acrylonitrile, methylene chloride, and chloroform for the petrochemical districts; acetone, chloroform, and toluene for the science-based districts; and chlorinated and aromatic hydrocarbons for the multiple industrial districts. The aqueous pollutants in the united WWTPs were closely related to the characteristics of the manufacturing plants in the districts. To effectively prevent VOC emissions from the primary treatment section of petrochemical WWTPs, the updated regulations governing VOC emissions were issued by the Taiwanese Environmental Protection Administration in September 2005, legally mandating a seal cover system incorporating venting and air purification equipment. Cost analysis indicates that incinerators with regenerative heat recovery are optimal for treating high VOC concentrations, exceeding 10,000ppm as CH(4), from the oil separation basins. However, the emission concentrations, ranging from 100 to 1000ppm as CH(4) from the other primary treatment facilities and bio-treatment stages, should be collected and then injected into the biological oxidation basins via existing or new blowers. The additional capital and operating costs required to treat the VOC emissions of 1000ppm as CH(4) from primary treatment facilities are less than US$0.1 for perm(3) wastewater treatment capacity.  相似文献   
214.
Hsu JC  Lin CJ  Liao CH  Chen ST 《Chemosphere》2008,72(7):1049-1055
This study describes the competitive effects of selected ions and natural organic matter on As(V) removal using reclaimed iron-oxide coated sands (RIOCS) in the single- and multi-ion systems. A 2(7-3) factional factorial experimental design (FFD) was employed for screening main competitive factors in this adsorption process. As a result, the inhibitive competition effects of the anions on As(V) removal in the single ion system were in the following sequence: PO(4)(3-)>SiO(3)(2-)>HCO(3)(-)>humic acid (HA)>SO(4)(2-)>Cl(-), whereas the cation Ca(2+) was observed to enhance the As(V) removal. In addition, the optimum initial pH for As(V) removal in single-ion system was 5. Based on the estimates of major effects and interactions from the FFD, PO(4)(3-), SiO(3)(2-), Ca(2+) and HA were important factors on As(V) removal in the multi-ion system. The promoters for the As(V) removal were found to be Ca(2+) and, to a lesser extent, SO(4)(2-). The competitive effects of these ions on As(V) removal were in the order of PO(4)(3-), SiO(3)(2-), HA, HCO(3)(-), and Cl(-). In the single ion system, the efficiencies of As(V) removal range from 75% to 96%, much higher than those in the multi-ion system (44%) at the initial pH 5. Clearly, there were some complex anion interactions in the multi-ion system. To promote the removal of As(V) by RIOCS, it is proposed to lower the pH in the single-ion system, while in the multi-ion system, the increase of the Ca(2+) concentration, or decreases of PO(4)(3-), SiO(3)(2-) and HA concentrations is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号