首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   6篇
  国内免费   2篇
安全科学   2篇
废物处理   3篇
环保管理   22篇
综合类   15篇
基础理论   65篇
污染及防治   23篇
评价与监测   9篇
社会与环境   9篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   2篇
  2015年   8篇
  2014年   1篇
  2013年   8篇
  2012年   6篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1994年   6篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   4篇
  1987年   4篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有148条查询结果,搜索用时 31 毫秒
101.
Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.  相似文献   
102.
In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species‐centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others’ approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate.  相似文献   
103.
Hybridization between endangered species and more common species is a significant problem in conservation biology because it may result in extinction or loss of adaptation. The historical reduction in abundance and geographic distribution of the American plains bison (Bison bison bison) and their recovery over the last 125 years is well documented. However, introgression from domestic cattle (Bos taurus) into the few remaining bison populations that existed in the late 1800s has now been identified in many modern bison herds. We examined the phenotypic effect of this ancestry by comparing weight and height of bison with cattle or bison mitochondrial DNA (mtDNA) from Santa Catalina Island, California (U.S.A.), a nutritionally stressful environment for bison, and of a group of age‐matched feedlot bison males in Montana, a nutritionally rich environment. The environmental and nutritional differences between these 2 bison populations were very different and demonstrated the phenotypic effect of domestic cattle mtDNA in bison over a broad range of conditions. For example, the average weight of feedlot males that were 2 years of age was 2.54 times greater than that of males from Santa Catalina Island. In both environments, bison with cattle mtDNA had lower weight compared with bison with bison mtDNA, and on Santa Catalina Island, the height of bison with cattle mtDNA was lower than the height of bison with bison mtDNA. These data support the hypothesis that body size is smaller and height is lower in bison with domestic cattle mtDNA and that genomic integrity is important for the conservation of the American plains bison. Efectos Fenotípicos del ADN Mitocondrial de Ganado en el Bisonte Americano  相似文献   
104.
Converting a congested high-occupancy vehicle (HOV) lane into a high-occupancy toll (HOT) lane is a viable option for improving travel time reliability for carpools and buses that use the managed lane. However, the emission impacts of HOV-to-HOT conversions are not well understood. The lack of emission impact quantification for HOT conversions creates a policy challenge for agencies making transportation funding choices. The goal of this paper is to evaluate the case study of before-and-after changes in vehicle emissions for the Atlanta, Georgia, I-85 HOV/HOT lane conversion project, implemented in October 2011. The analyses employed the Motor Vehicle Emission Simulator (MOVES) for project-level analysis with monitored changes in vehicle activity data collected by Georgia Tech researchers for the Georgia Department of Transportation (GDOT). During the quarterly field data collection from 2010 to 2012, more than 1.5 million license plates were observed and matched to vehicle class and age information using the vehicle registration database. The study also utilized the 20-sec, lane-specific traffic operations data from the Georgia NaviGAtor intelligent transportation system, as well as a direct feed of HOT lane usage data from the State Road and Tollway Authority (SRTA) managed lane system. As such, the analyses in this paper simultaneously assessed the impacts associated with changes in traffic volumes, on-road operating conditions, and fleet composition before and after the conversion. Both greenhouse gases and criteria pollutants were examined.

Implications: A straight before-after analysis showed about 5% decrease in air pollutants and carbon dioxide (CO2). However, when the before-after calendar year of analysis was held constant (to account for the effect of 1 yr of fleet turnover), mass emissions at the analysis site during peak hours increased by as much as 17%, with little change in CO2. Further investigation revealed that a large percentage decrease in criteria pollutants in the straight before-after analysis was associated with a single calendar year change in MOVES. Hence, the Atlanta, Georgia, results suggest that an HOV-to-HOT conversion project may have increased mass emissions on the corridor. The results also showcase the importance of obtaining on-road data for emission impact assessment of HOV-to-HOT conversion projects.  相似文献   

105.
Data collected over a mixed conifer/deciduous forest at the U.S. Department of Energy’s Savannah River Site in South Carolina using sonic anemometry reveal that on-site and real-time measurements of the velocity component standard deviations, σv and σw, are preferred for dispersion modeling. Such data are now easily accessible, from the outputs of cost-effective and rugged sonic anemometers. The data streams from these devices allow improvements to conventional methodologies for dispersion modeling. In particular, extrapolation of basic input data from a nearby location to the site of the actual release can be facilitated. In this regard reliance on the velocity statistics σv and σw appears to be preferred to the conventional σθ and σ?. In the forest situations addressed here, the uncertainties introduced by extrapolating initializing properties (u, θ, σθ, and σ?, or alternatively, σv and σw) from some location of actual measurement to some nearby location where an actual release occurs are similar to those associated with the spread of the plume itself and must be considered in any prediction of the likelihood of downwind concentration (exposure) exceeding some critical value, i.e., a regulatory standard. Consideration of plume expansion factors related to meander will not necessarily cause predicted downwind maxima within a particular plume to be decreased; however, the probability of exposure to this maximum value at any particular location will be reduced. Three-component sonic anemometers are affordable and reliable, and are now becoming a standard for meteorological monitoring programs subject to regulatory oversight. The time has come for regulatory agencies and the applied dispersion community to replace the traditional discrete sets of dispersion coefficients based on Pasquill stability by the direct input of measured turbulence data.

Implications: The continued endorsement of legacy Pasquill-Gifford stability schemes is presently under discussion among professional groups and regulatory agencies. The present paper is an attempt to introduce some rationality, for the case of a forested environment.  相似文献   
106.
Lenihan HS  Holbrook SJ  Schmitt RJ  Brooks AJ 《Ecology》2011,92(10):1959-1971
The species composition of coral communities has shifted in many areas worldwide through the relative loss of important ecosystem engineers such as highly branched corals, which are integral in maintaining reef biodiversity. We assessed the degree to which the performance of recently recruited branching corals was influenced by corallivory, competition, sedimentation, and the interactions between these factors. We also explored whether the species-specific influence of these biotic and abiotic constraints helps to explain recent shifts in the coral community in lagoons of Moorea, French Polynesia. Population surveys revealed evidence of a community shift away from a historically acroporid-dominated community to a pocilloporid- and poritid-dominated community, but also showed that the distribution and abundance of coral taxa varied predictably with location in the lagoon. At the microhabitat scale, branching corals grew mainly on dead or partially dead massive Porites ("bommies"), promontories with enhanced current velocities and reduced sedimentation. A demographic study revealed that growth and survival of juvenile Pocillopora verrucosa and Acropora retusa, the two most common branching species of each taxon, were affected by predation and competition with vermetid gastropods. By 24 months of age, 20-60% of juvenile corals suffered partial predation by corallivorous fishes, and injured corals experienced reduced growth and survival. A field experiment confirmed that partial predation by corallivorous fishes is an important, but habitat-modulated, constraint for branching corals. Competition with vermetid gastropods reduced growth of both branching species but unexpectedly also provided an associational defense against corallivory. Overall, the impact of abiotic constraints was habitat-specific and similar for Acropora and Pocillopora, but biotic interactions, especially corallivory, had a greater negative effect on Acropora than Pocillopora, which may explain the local shift in coral community composition.  相似文献   
107.
Marine reserves can help in maintaining biodiversity and potentially be useful as a fishery management tool by removing human-mediated impacts. Intertidal, soft-sediment habitats can often support robust recreational and commercial shellfish harvests, especially for clams; however, there is limited research on the effects of reserves in these habitats. In San Juan County, Washington, several reserves prohibit recreational clam digging. We examined the effects of these reserves on infaunal community composition through comparison with non-reserve beaches during a 6-week period. Clam abundance, overall species richness and total polychaete family richness were greater on reserve beaches compared to non-reserve beaches. Additionally, an experiment within a reserve demonstrated negative impacts of digging on non-target infauna. These effects probably resulted from local disruption and disturbance of the sediment habitat and not from increased post-digging predation, which was controlled. Intertidal reserves could play an important role in sustaining local and potentially regional biodiversity.  相似文献   
108.
109.
Distributions of serotonin and catecholamines in larvae of the marine bryozoan Bugula neritina (Bryozoa: Cheilostomatida) were investigated using immunohistochemistry with anti-serotonin antiserum and glyoxylic acid–induced fluorescence histochemistry. Anti-serotonin immunoreactive substances and glyoxylic acid–induced fluorescent substances had similar distributions in the equatorial neuromuscular ring, the neural plexus, the paired axial neuromuscular cords, and tracts connecting the neural plexus to ciliated cells bordering the pyriform organ. The effects of dopamine, noradrenaline, adrenaline, tyramine, octopamine, synephrine and serotonin, at 10−4, 10−5 and 10−6M, on settlement were analysed. In filtered seawater, 98% of larvae settled in 3 h, but only 11%, 3% and 6% total settlement was observed after 8 h in 10−4M dopamine, 10−4M serotonin and 10−5M serotonin, respectively. Total settlement was 70% in 10−4M noradrenaline, 80% in 10−4M adrenaline and 60% in 10−4M tyramine. Less than 60% settlement was observed in 10−4 and 10−5M octopamine and synephrine. Serotonin's inhibitory effect on settlement was mimicked by a range of serotonin receptor agonists and antagonists, among which 5-carboxamidotryptamine was the most potent. Received: 19 March 1999 / Accepted: 11 October 1999  相似文献   
110.
The Savannah River National Laboratory (SRNL) Weather Information and Display System was used to provide meteorological and atmospheric modeling/consequence assessment support to state and local agencies after the collision of two Norfolk Southern freight trains on the morning of January 6, 2005. This collision resulted in the release of several toxic chemicals to the environment, including chlorine. The dense and highly toxic cloud of chlorine gas that formed in the vicinity of the accident was responsible for 9 fatalities and caused injuries to more than 500 others. Transport model results depicting the forecast path of the ongoing release were made available to emergency managers in the county's Unified Command Center shortly after SRNL received a request for assistance. Support continued over the ensuing 2 days of the active response. The SRNL also provided weather briefings and transport/consequence assessment model results to responders from the South Carolina Department of Health and Environmental Control, the Savannah River Site (SRS) Emergency Operations Center, Department of Energy headquarters, and hazard material teams dispatched from the SRS. Operational model-generated forecast winds used in consequence assessments conducted during the incident were provided at 2-km horizontal grid spacing during the accident response. High-resolution Regional Atmospheric Modeling System (RAMS, version 4.3.0) simulation was later performed to examine potential influences of local topography on plume migration in greater detail. The detailed RAMS simulation was used to determine meteorology using multiple grids with an innermost grid spacing of 125 m. Results from the two simulations are shown to generally agree with meteorological observations at the time; consequently, local topography did not significantly affect wind in the area. Use of a dense gas dispersion model to simulate localized plume behavior using the higher-resolution winds indicated agreement with fatalities in the immediate area and visible damage to vegetation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号