首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   8篇
  国内免费   29篇
安全科学   25篇
废物处理   69篇
环保管理   54篇
综合类   87篇
基础理论   89篇
污染及防治   183篇
评价与监测   39篇
社会与环境   16篇
灾害及防治   3篇
  2023年   9篇
  2022年   19篇
  2021年   14篇
  2020年   7篇
  2019年   13篇
  2018年   18篇
  2017年   24篇
  2016年   29篇
  2015年   15篇
  2014年   25篇
  2013年   43篇
  2012年   30篇
  2011年   41篇
  2010年   23篇
  2009年   25篇
  2008年   36篇
  2007年   30篇
  2006年   32篇
  2005年   29篇
  2004年   13篇
  2003年   16篇
  2002年   13篇
  2001年   11篇
  2000年   5篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   7篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1983年   2篇
  1979年   2篇
  1977年   1篇
  1964年   1篇
  1961年   1篇
  1958年   2篇
排序方式: 共有565条查询结果,搜索用时 31 毫秒
81.
Environmental Modeling & Assessment - This paper describes the application of the air pollution model (TAPM-CTM) for photochemical airshed modelling in the Ho Chi Minh region. The model was...  相似文献   
82.
Quantifying surface water shortages in arid and semiarid agricultural regions is challenging because limited water supplies are distributed over long distances based on complex water management systems constrained by legal, economic, and social frameworks that evolve with time. In such regions, the water supply is often derived in a climate dramatically different from where the water is diverted to meet agricultural demand. The existing drought indices which rely on local climate do not portray the complexities of the economic and legal constraints on water delivery. Nor do these indices quantify the shortages that occur in drought. Therefore, this research proposes a methodological approach to define surface water shortages in irrigated agricultural systems using a newly developed index termed the Surface Water Delivery Index (SWDI). The SWDI can be used to uniformly quantify surface water deficits/shortages at the end of the irrigation season. Results from the SWDI clearly illustrate how water shortages in droughts identified by the existing indices (e.g., SPI and PDSI) vary strongly both within and between basins. Some surface water entities are much more prone to water shortages than other entities based both on their source of water supply and water right portfolios.  相似文献   
83.

Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90–100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45–1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L−1; Cr 1.5 mg L−1; Fe, Pb, and Zn 3.0 mg L−1; Mn and Ni 1 mg L−1) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.

  相似文献   
84.
Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day).

Implications: In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.  相似文献   

85.
为了研究不同好氧预处理方式对餐厨垃圾厌氧消化产甲烷的影响,通过建立3个模拟厌氧生物反应器,研究了传统厌氧生物反应器C1、上层好氧预处理-厌氧生物反应器C2和底部好氧预处理-厌氧生物反应器C3 3种不同操作条件下的产甲烷过程.结果表明,挥发性有机酸的累积使C1始终处于产甲烷滞后阶段;而C2、C3的好氧预处理通过加快易水解酸化组分和过量挥发性有机酸的好氧降解,有效缓解了酸性抑制,产甲烷滞后时间明显缩短至10 d内.第32天C2停止上层曝气后,在27 d内甲烷浓度达到了50%以上,同时,产甲烷速率迅速上升,并在第81天可达到峰值773 mL/(kg·d).C3在第11天停止底部曝气后,虽然经过22 d的时间甲烷浓度即上升至50%,但之后产甲烷速率经历回落阶段后再次逐渐上升,在实验结束时仅达到517 mL/(kg·d).上层曝气的好氧预处理方式所需曝气时间相对较长,但其产甲烷启动快,与底部曝气相比,其后期的甲烷化过程更稳定并可达到较高的产甲烷速率.  相似文献   
86.
87.
Bae E  Lee JW  Hwang BH  Yeo J  Yoon J  Cha HJ  Choi W 《Chemosphere》2008,72(2):174-181
The photocatalytic inactivation (PCI) of Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) was performed using polyoxometalate (POM) as a homogeneous photocatalyst and compared with that of heterogeneous TiO2 photocatalyst. Aqueous suspensions of the microorganisms (107–108 cfu ml−1) and POM (or TiO2) were irradiated with black light lamps. The POM-PCI was faster than (or comparable to) TiO2-PCI under the experimental conditions employed in this study. The relative efficiency of POM-PCI was species-dependent. Among three POMs (H3PW12O40, H3PMo12O40, and H4SiW12O40) tested in this study, the inactivation of E. coli was fastest with H4SiW12O40 while that of B. subtilis was the most efficient with H3PW12O40. Although the biocidal action of TiO2 photocatalyst has been commonly ascribed to the role of photogenerated reactive oxygen species such as hydroxyl radicals and superoxides, the cell death mechanism with POM seems to be different from TiO2-PCI. While TiO2 caused the cell membrane disruption, POM did not induce the cell lysis. When methanol was added to the POM solution, not only the PCI of E. coli was enhanced (contrary to the case of TiO2-PCI) but also the dark inactivation was observed. This was ascribed to the in situ production of formaldehyde from the oxidation of methanol. The interesting biocidal property of POM photocatalyst might be utilized as a potential disinfectant technology.  相似文献   
88.
The levels and distribution of polynuclear aromatic hydrocarbons (PAHs) were determined in soil samples from background locations in the UK and Norway, to investigate their spatial distribution and the controlling environmental factors. Concentrations ranged between 42 and 11200 microg kg(-1) (geometric mean 640 microg kg(-1)) and 8.6 and 1050 microg kg(-1) (150 microg kg(-1)) dry weight in the UK and Norwegian soil, respectively. Proximity to sources and locations susceptible to high atmospheric depositional inputs resulted in higher concentrations. Statistically significant relationships were observed between PAH and total organic carbon (TOC) in the Norwegian samples. High molecular weight PAHs correlated with black carbon (BC) in UK-woodland soil. These observations support the hypothesis that TOC plays an important role in the retention of PAHs in soil and that PAHs are often combined with BC during combustion emissions. PAHs with 4 and more rings comprised approximately 90% of total PAHs in the UK soil, but only 50% in the Norwegian soil. The mixture of PAHs implied that fractionation occurred during long-range atmospheric transport and deposition. The lighter PAHs with lower K(ow) values more readily reached the most remote sites. The heavier PAHs with higher K(ow) values remained in closer proximity to sources.  相似文献   
89.
Jeon SH  Eom Y  Lee TG 《Chemosphere》2008,71(5):969-974
Photocatalytic fibers were generated from the continuous evaporation of titanium tetraisopropoxide with tetraethyl orthosilicate through a flame burner. The morphology, the crystal form, and the components of the nanotitanosilicate fibers were analyzed by Raman spectroscopy, Field emission-scanning electron microscope, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis. The nanotitanosilicates prepared by three different carrier gases (air, N(2), and Ar) were tested for their photocatalytic ability to remove/oxidize gas-phase elemental mercury. Under UV black light, the Hg(0) capture efficiencies were 78%, 86%, and 85% for air, N(2), and Ar, respectively. For air, the value was close to 90%, even under household fluorescent light. The Hg(0) capture efficiency by nanotitanosilcate was measured under fluorescent light, UV black light, and sunlight.  相似文献   
90.
Chlorofluorocarbons CFC-11 (CCl(3)F), CFC-12 (CCl(2)F(2)), and CFC-113 (CCl(2)F-CClF(2)) are used in hydrology as transient tracers under the assumption of conservative behavior in the unsaturated and saturated soil zones. However, laboratory and field studies have shown that these compounds are not stable under anaerobic conditions. To determine the degradation rates of CFCs in a tropical environment, atmospheric air, unsaturated zone soil gas, and anoxic groundwater samples were collected in Araihazar upazila, Bangladesh. Observed CFC concentrations in both soil gas and groundwater were significantly below those expected from atmospheric levels. The CFC deficits in the unsaturated zone can be explained by gas exchange with groundwater undersaturated in CFCs. The CFC deficits observed in (3)H/(3)He dated groundwater were used to estimate degradation rates in the saturated zone. The results show that CFCs are degraded to the point where practically no (<5%) CFC-11, CFC-12, or CFC-113 remains in groundwater with (3)H/(3)He ages above 10 yr. In groundwater sampled at our site CFC-11 and CFC-12 appear to degrade at similar rates with estimated degradation rates ranging from approximately 0.25 yr(-1) to approximately 6 yr(-1). Degradation rates increased as a function of reducing conditions. This indicates that CFC dating of groundwater in regions of humid tropical climate has to be carried out with great caution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号