首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   7篇
  国内免费   1篇
安全科学   3篇
废物处理   6篇
环保管理   21篇
综合类   12篇
基础理论   21篇
污染及防治   44篇
评价与监测   8篇
社会与环境   9篇
灾害及防治   4篇
  2023年   1篇
  2022年   2篇
  2020年   7篇
  2019年   1篇
  2018年   10篇
  2017年   5篇
  2016年   7篇
  2015年   1篇
  2014年   3篇
  2013年   12篇
  2012年   7篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   9篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1960年   1篇
  1929年   1篇
  1926年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
31.
We propose to bridge the domains of positive health and leadership. We suggest that a “positive” health model helps explain highly effective leadership. The leader must strive for health and facilitate health in his/her followers. We look at leadership through this new and positive lens, that of “positive” health promotion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
32.
ABSTRACT

The purpose of this investigation was to evaluate the success of residues from advanced Clean Coal Technology (CCT) systems as stabilization agents for heavy metal containing hazardous wastes. In the context examined here, stabilization refers to techniques that reduce the toxicity of a waste by converting the hazardous constituents to a less soluble, mobile, or toxic form.1 Three advanced CCT byproducts were used: coal waste-fired circulating fluidized bed combustor residue, pressurized fluidized bed combustor residue, and spray drier residue. Seven metal-laden hazardous wastes were treated: three contaminated soils, two air pollution control dusts, wastewater treatment plant sludge, and sandblast waste. Each of the seven hazardous wastes was treated with each of the three CCT byproducts at dosages of 10, 30, and 50% by weight (byproduct:waste). The treatment effectiveness of each mixture was evaluated by the Toxicity Characteristic Leaching Procedure. Of the 63 mixtures evaluated, 21 produced non-hazardous residues. Treatment effectiveness can likely be attributed to mechanisms such as precipitation and encapsulation due to the formation of hydrated calcium silicates and calcium sulfo-alu-minates. Results indicate that these residues have potential beneficial uses to the hazardous waste treatment community, possibly substituting for costly treatment chemicals.  相似文献   
33.
34.
35.
利用新型循环流化床进行清水实验及硝化、反硝化启动试验研究,考察了系统对有机物和氮的去除效果,并分析了曝气量对系统启动的影响。结果表明,将输送床和传统流化床工艺进行有机结合,技术上可行,可以在系统内不同区建立缺氧、好氧条件,通过硝化和反硝化作用完成脱氮。  相似文献   
36.
37.
38.
Woody encroachment is a widespread and acute phenomenon affecting grasslands and savannas worldwide. We performed a meta-analysis of 29 studies from 13 different grassland/savanna communities in North America to determine the consequences of woody encroachment on plant species richness. In all 13 communities, species richness declined with woody plant encroachment (average decline = 45%). Species richness declined more in communities with higher precipitation (r2 = 0.81) and where encroachment was associated with a greater change in annual net primary productivity (ANPP; r2 = 0.69). Based on the strong positive correlation between precipitation and ANPP following encroachment (r2 = 0.87), we hypothesize that these relationships occur because water-limited woody plants experience a greater physiological and demographic release as precipitation increases. The observed relationship between species richness and ANPP provides support for the theoretical expectation that a trade-off occurs between richness and productivity in herbaceous communities. We conclude that woody plant encroachment leads to significant declines in species richness in North American grassland/savanna communities.  相似文献   
39.
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future.

Implications: Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.  相似文献   

40.
Quantitative assessment of human exposures and health effects due to air pollution involve detailed characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these three components on a consistent spatial and temporal basis taking into account linkages and feedbacks. The current state-of-practice for such assessments is to exercise emission, meteorology, air quality, exposure, and dose models separately, and to link them together by using the output of one model as input to the subsequent downstream model. Quantification of variability and uncertainty has been an important topic in the exposure assessment community for a number of years. Variability refers to differences in the value of a quantity (e.g., exposure) over time, space, or among individuals. Uncertainty refers to lack of knowledge regarding the true value of a quantity. An emerging challenge is how to quantify variability and uncertainty in integrated assessments over the source-to-dose continuum by considering contributions from individual as well as linked components. For a case study of fine particulate matter (PM2.5) in North Carolina during July 2002, we characterize variability and uncertainty associated with each of the individual concentration, exposure and dose models that are linked, and use a conceptual framework to quantify and evaluate the implications of coupled model uncertainties. We find that the resulting overall uncertainties due to combined effects of both variability and uncertainty are smaller (usually by a factor of 3–4) than the crudely multiplied model-specific overall uncertainty ratios. Future research will need to examine the impact of potential dependencies among the model components by conducting a truly coupled modeling analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号