首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   1篇
  国内免费   3篇
安全科学   3篇
废物处理   3篇
环保管理   13篇
综合类   22篇
基础理论   36篇
污染及防治   74篇
评价与监测   10篇
社会与环境   9篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   9篇
  2011年   20篇
  2010年   16篇
  2009年   5篇
  2008年   8篇
  2007年   13篇
  2006年   12篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   11篇
  2001年   4篇
  2000年   6篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1977年   1篇
  1962年   1篇
  1960年   1篇
  1958年   1篇
  1957年   1篇
  1955年   1篇
排序方式: 共有170条查询结果,搜索用时 312 毫秒
31.
Mercury removal from incineration flue gas by organic and inorganic adsorbents   总被引:11,自引:0,他引:11  
Jurng J  Lee TG  Lee GW  Lee SJ  Kim BH  Seier J 《Chemosphere》2002,47(9):907-913
Experiments were performed to investigate various adsorbents for their mercury removal capabilities from incineration flue gases. Four different materials were tested; Zeolite, Bentonite, activated carbon (AC), and wood char. Real incineration off-gas and in-lab simulated combustion flue gases (N2 + Hg) were used. Three cylindrical-shaped sorbent columns with 5 cm in diameter and 20 cm in length were used. The gas flow rate was fixed at 660 l/h at all times. Concentrations of NO, CO, O2, CO2, SO2, H2O, HCl, and mercury were continuously monitored. Mercury removal efficiencies of natural Zeolite and Bentonite were found to be much lower than those of the referenced AC. Amount of Hg removed were 9.2 and 7.4 microg/g of Zeolite and Bentonite, respectively. Removal efficiencies of each layer consisted of inorganic adsorbents were no higher than 7%. No significant improvement was observed with sulfur impregnation onto the inorganic adsorbents. Organic adsorbents (wood char and AC) showed much higher mercury removal efficiencies than those of inorganic ones (Zeolite and Bentonite). Mercury removal efficiency of wood char reached over 95% in the first layer, showing almost same effectiveness as AC which currently may be the most effective adsorbents for mercury. Amount of mercury captured by wood char was approximately 0.6 mg/g of wood char, close to the amount captured by AC tested in this study. Hence, wood char, made from the waste woods through a gasification process, should be considered as a possible alternative to relatively expensive AC.  相似文献   
32.
The capping of stationary source emissions of NOx in 22 states and the District of Columbia is federally mandated by the NOx SIP Call legislation with the intended purpose of reducing downwind O3 concentrations. Monitors for NO, NO2, and the reactive oxides of nitrogen into which these two compounds are converted will record data to evaluate air quality model (AQM) predictions. Guidelines for testing these models indicate the need for semicontinuous measurements as close to real time as possible but no less frequently than once per hour. The measurement uncertainty required for AQM testing must be less than +/-20% (+/-10% for NO2) at mixing ratios of 1 ppbv and higher for NO, individual NOz component compounds, and NOy. This article is a review and discussion of different monitoring methods, some currently used in research and others used for routine monitoring. The performance of these methods is compared with the monitoring guidelines. Recommendations for advancing speciated and total NOy monitoring technology and a listing of demonstrated monitoring approaches are also presented.  相似文献   
33.
OBJECTIVES: This work assesses the contribution to climate change resulting from emissions of the group of halogenated greenhouse gases. METHODS: A bottom-up emission model covering 22 technological sectors in four major regions is described. Emission estimates for 1996 and projection for 2010 and 2020 are presented. The costs for deep cuts into projected emission levels are calculated. RESULTS: The substances covered by this study have contributed emissions of 1100 +/- 800 MT CO2 equivalents per year in 1996. In terms of their relative contribution to emissions of CO2 equivalents, this corresponds to 3 +/- 2% of global emissions of all anthropogenic greenhouse gases. The wide range of uncertainty is due to the poorly quantified net global warming potential of the ozone depleting substances, which have an indirect cooling effect on climate through the destruction of stratospheric ozone. For annual emissions of HFCs, PFCs and SF6 (which are regulated under the Kyoto Protocol and for which global warming potentials are well defined), the relative contribution is projected to increase to 2% (600 MT CO2 eq.) of global greenhouse gas emissions by 2010. This trend is expected to continue, emissions are projected to grow to a contribution of roughly 3% (870 MT CO2 eq.) in 2020 compared to 0.9% (300 MT CO2 eq.) in 1996. For HFCs, PFCs and SF6, this study identifies global emission reduction potentials of 260 MT CO2 eq. per year in 2010 and 640 MT CO2 eq. per year in 2020 at below US$ 50 per ton. These values correspond to roughly 40% and 75% of projected emissions in 2010 and 2020, respectively.  相似文献   
34.
Measurements of carbonyl sulfide (COS) and carbondisulfide (CS2) were carried out on samples drawn from a smoke stack of an aluminium smelter. Volume mixing ratios of 6 ppm COS and 0.1 ppm CS2 were measured for gases from the electrolysis unit that had previously passed an Al2O3 fluid bed reactor and electrostatic precipitators. Specific emissions of 1.6 kg COS and 0.03 kg CS2 per ton of primary aluminium were found. Extrapolating from this particular smelter’s conditions to a world mix specific COS emissions of about 4 kg/t(Al) are calculated resulting in emissions of annually 0.08 Tg COS into the atmosphere due to electrolytic aluminium production in 1995. Besides the photochemical conversion of anthropogenic CS2 aluminium production is established to be the second major industrial source of COS probably exceeding automotive tire wear’s and coal combustion’s contributions.  相似文献   
35.
Two water quality monitoring strategies designed to sample hydrophobic organic contaminants have been applied and evaluated across an expected concentration gradient in PAHs in the Moreton region. Semipermeable membrane devices (SPMDs) that sequester contaminants via passive diffusion across a membrane were used to evaluate the concentration of PAHs at four and five sites in spring and summer 2001/2002, respectively. In addition, induction of hepatic cytochrome P4501, EROD activity, in yellowfin bream, Acanthopagrus australis, captured in the vicinity of SPMD sampling sites following deployment in summer was used as a biomarker of exposure to PAHs and related chemicals. SPMDs identified a clear and reproducible gradient in PAH contamination with levels increasing from east to west in Moreton Bay and upstream in the Brisbane River. The highest PAH concentrations expressed as B(a)P-toxicity equivalents (TEQs) were found in urban areas, which were also furthest upstream and experienced the least flushing. Cytochrome P4501 induction in A. australis was similar at all sites. The absence of clear trends in EROD activity may be attributable to factors not measured in this study or variable residency time of A. australis in contaminated areas. It is also possible that fish in the Moreton region are displaying enzymatic adaptation, which has been reported previously for fish subjected to chronic exposure to organic contaminants. These potential interferences complicate interpretation of EROD activity from feral biota. It is, therefore, suggested that future monitoring combine the two methods by applying passive sampler extracts to in vitro EROD assays.  相似文献   
36.

Objective and Background

PCB (polychlorinated biphenyle) are typical man-made environmental pollutants that cause a broad spectrum of effects in vertebrates. Although a lot has been studied about the toxic effects of xenobiotic substances on aquatic organisms, their subacute effects are not yet well known. Fish occupies a central position in freshwater food webs and therefore, carp was chosen to be our test organism. The aim of our study was the investigation of subacute effects of Aroclor 1254 (22μg l?1) on respiration, swimming activity, and biotransformation, allowing discussion of changed interaction between the available energy resources.

Methods

The respiration experiments under controlled laboratory conditions were run for 29 days (5 d before, 16 d with and 8 d after chemical exposure) with exposed carp compared to the non-exposed fish. Furthermore, the BehavioQuant system quantitatively monitors the positions of each individual fish before (8 d) and during (21 d) PCB exposure and swimming activity (number of horizontal turnings s?1) of animals was calculated. Thereafter, liver samples were taken from animals for analysis of the phase 2 enzyme activity (glutathione-S-transferase). In the respiration experiments were 6 exposure, 6 controll, and 3 solubilizer controll groups (12 animals each group); in the behavioral experiments were 9 exposure, 6 controll- und 3 solubilizer controll groups (6 animals each group), and in the enzyme activity measurements were 9 exposure, 6 controll and 3 solubilizer controll groups (6 animals each group) examined.

Results and Discussion

A clearly increased (33%) oxygen consumption due to the PCB-exposure is found to be reversible; after the exposure period the respiration of carp shows a level comparable to the oxygen consumption during non-exposure time. By evaluating quantitative behavioral parameters of animals, it becomes evident that the exposure to PCB also causes a reversible change in their swimming behavior. Chemical stress leads to a decrease of mean daily swimming activity combined with an increase of the mean number of turnings during the night. Thereafter, the swimming activity shifts to the circadian swimming behavior under control conditions. Furthermore, our measurement of soluble and microsomal glutathione-S-transferase activity of fish liver shows a significant elevation after exposure period.

Conclusion

Our results prove that it was feasible to detect sublethal effects of PCB-mixture on all parameters under these conditions successfully. Our findings imply that fish are able to cope with the chemicals and we purse the hypothesis that the higher physiological energy demand caused by increased activity of enzymes, which are involved in biotransformation of foregin substances, may be related to a higher respiration of fish stressed by xenobiotics.

Recommendation and Outlook

Further experiments should investigate the effects of PCB on ecophysiological parameters of carp fed with exposed natural food allowing discussion of ecological consequences.  相似文献   
37.
The main issues of the studies described were the validation of a test design for the assessment of the bioaccumulation potential of environmental pollutants and the applicability ofEisenia fetida as a model-organism and artificial soil (OECD) as a standard test substrate. The test organisms used wereE. fetida of our own breeding stock andAllolobophora caliginosa, Allolobophora chlorotica, Allolobophora longa and Lumbricus rubellus sampled from a field site. Test soils used were the artificial soil (OECD) and a BBA field soil. Soils were each contaminated with 10 mg HCB and Pyrene per soil dry-weight. Within the test period of 4 weeks, samples were taken weekly for residue analysis in the worms and soils. Bioaccumulation factors (AF) calculated forE. fetida and the free-living species were in the range of 10–17 (HCB) and 0.9–1.7 (Pyrene) depending on the soil used. By re-calculation of the concentrations in soil to concentrations in soil water, the resulting bioconcentration factors are compared with published BCF values determined from QSAR’s of other worm species and fresh water fish. It could be concluded that the existing earthworm tests (OECD 1984, ISO 1998) represent an appropriate design for testing the bioconcentration potential of chemicals in soil.  相似文献   
38.
39.
Filters in residential and office air conditioning(A/C) systems have been used as sampling devices for monitoring different pollutants.However,cabin air filters(CAFs) in the A/C system of passenger cars have not been utilised for this purpose.In this study,we collected22 used CAFs from passenger cars in Hanoi,Vietnam to analyse for 8 polybrominated diphenyl ethers(PBDEs) and 10 organophosphate esters(OPEs).All the analytes were detected in more than 50% of samples with the exception of BDE153 and BDE154.The average concentrations of ∑_(10)OPEs and ∑_8 BDEs in the captured dust were 2600 and 40 ng/g,respectively with Tris(1-chloro-2-propyl) phosphate(TCIPP) and BDE209 as the dominant congener in OPE and BDE groups,respectively.CAFs are a potential tool to qualitatively assess the levels of semi-volatile chemicals in suspended dust in cars as a screening step for exposure assessment of those chemicals.  相似文献   
40.
Radical chemistry in the nocturnal urban boundary layer is dominated by the nitrate radical, NO3, which oxidizes hydrocarbons and, through the aerosol uptake of N2O5, indirectly influences the nitrogen budget. The impact of NO3 chemistry on polluted atmospheres and urban air quality is, however, not well understood, due to a lack of observations and the strong impact of vertical stability of the boundary layer, which makes nocturnal chemistry highly altitude dependent.Here we present long-path DOAS observations of the vertical distribution of the key nocturnal species O3, NO2, and NO3 during the TRAMP experiment in Summer 2006 in Houston, TX. Our observations confirm the altitude dependence of nocturnal chemistry, which is reflected in the concentration profiles of all trace gases at night. In contrast to other study locations, NO3 chemistry in Houston is dominated by industrial emissions of alkenes, in particular of isoprene, isobutene, and sporadically 1,3-butadiene, which are responsible for more than 70% of the nocturnal NO3 loss. The nocturnally averaged loss of NOx in the lowest 300 m of the Houston atmosphere is ~0.9 ppb h?1, with little day-to-day variability. A comparison with the daytime NOx loss shows that NO3 chemistry is responsible for 16–50% of the NOx loss in a 24-h period in the lowest 300 m of the atmosphere. The importance of the NO3 + isoprene/1,3-butadiene reactions implies the efficient formation of organic nitrates and secondary organic aerosol at night in Houston.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号