首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   2篇
  国内免费   6篇
安全科学   8篇
废物处理   15篇
环保管理   21篇
综合类   40篇
基础理论   45篇
污染及防治   73篇
评价与监测   13篇
社会与环境   5篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   8篇
  2013年   26篇
  2012年   9篇
  2011年   18篇
  2010年   6篇
  2009年   9篇
  2008年   17篇
  2007年   22篇
  2006年   13篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
141.
ABSTRACT

Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NOx), and particle mass with aerodynamic diameter below 2.5 μm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NOx, black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NOx and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NOx tended to cluster among the same vehicles.

IMPLICATIONS This study presents the characterization of on-road vehicle emissions in Wilmington, CA, by sampling individual vehicle plumes. Approximately 5% of the vehicles were high emitters, whose emissions were more than 5 times the fleet-average values. These high emitters were responsible for 30% and more than 50% of the average emission factors of LDGVs and HDDVs, respectively. It is likely that as the overall fleet becomes cleaner due to more stringent regulations, a small fraction of the fleet may contribute a growing and disproportionate share of the overall emissions. Therefore, long-term changes in on-road emissions need to be monitored.  相似文献   
142.
143.
144.
Hwang A  Ji W  Kweon B  Khim J 《Chemosphere》2008,70(6):1141-1145
In this study, phosphatic clay was used as a phosphate containing material. The fractionation of phosphorus was carried out using the CRM BCR-684 protocol, and the inorganic phosphorus, especially all the apatite phosphorus, was found as the major form. The elemental compositions of the phosphatic clay were identified using an X-ray fluorescence spectrometer, and was found to be mainly composed of CaO and P2O5. The specific surface area, pore volume and average pore diameter were measured also. Results of experiment show that the phosphatic clay may provide a cost-effective way to remediate heavy metal contaminated aqueous and slurry phase.  相似文献   
145.
146.
147.
148.
Abstract

Most modern pesticides are expensive. Application of excessive dosage rates is likely to cause undesirable biological side‐effects and is economically wasteful. Non‐uniform distribution of the spray cloud, or application at the wrong time, may result in failure to control the pest. It is the responsibility of the field operator to acquire sufficient knowledge and skill to ensure proper use of the control agents, to increase efficiency of their usage and to reduce unwanted side‐effects. To achieve this goal, he must take into consideration the various physical factors that govern field performance of pesticides.

A simple relationship exists between the spray volume and emission rate used, and droplet size produced. The use of extremely low spray volumes (i.e., those less than 2.0 litre per ha) for forest insect control in Canada, as opposed to higher volumes used in agriculture, necessitates the release of fine droplets (ranging from 20 to 70 μm in diameter) to obtain adequate coverage of the target area. These droplets take a long time to sediment downwards, evaporate in‐flight, become smaller in size and/or form powdery residues, thus contributing to off‐target drift and impaired droplet adhesion to target surfaces. Physical factors such as rain washing, degradation by sunlight and erosion by wind also influence the longevity of pesticide deposits on foliage which is crucial during the critical period of pest control.

Factors affecting the mode of entry into insects are related to the type of ingredients used in formulation. If a pesticide acts via crawling contact, formulations which would provide surface deposits would be more beneficial than emulsions or oil‐based mixes which tend to undergo penetration into foliar cuticle. Physical factors that affect field performance of a pesticide tank mix are related to phase separation and ‘breakdown of emulsions’ in the application equipment; ‘agglomeration and caking’ of wettable powder dispersions at the bottom of the tank; impaired flow behaviour of highly viscous formulations; and coarse atomization of high‐viscosity tank mixes leading to poor target cover.  相似文献   
149.
Groundwater remediation was evaluated for combined autotrophic and heterotrophic denitrification under high (154 mg/L as CaCO3) and low (95 mg/L as CaCO3) alkaline conditions. Two levels of acetate (47 and 94 mg/L) and ethanol (24 and 48 mg/L) were added to the reactors. Obtained denitrification rates were 2.89, 2.58, 3.55, 1.96, and 2.0 mg-N/L?·?h for high alkaline conditions, whereas under low alkaline conditions has given 2.36, 1.94, 2.47, 2.74, and 2.29 mg-N/L?·?h for control, 47 and 94 mg/L acetate, and 24 and 48 mg/L ethanol, respectively. Nitrite was accumulated for controls but reactors with acetate and ethanol did not accumulate nitrite. Acetate and ethanol addition decreased sulfate to nitrate ratios in the range of 4.5–7.58 for high alkaline conditions (12.77 for control) and 4.43–6.78 for low alkaline conditions (7.90 for control). Acetate was more efficient compared with ethanol in controlling sulfate production and pH maintenance.  相似文献   
150.
Abstract

The photocatalytic oxidation of propoxur, a nitrogen‐containing pesticide, has been investigated using aqueous TiO2 suspensions as catalyst in this study. The operating variables considered in the study were initial pH, temperature, [H2O2] and TiO2 loading. Results showed that 1 g/l of TiO2 was the optimum dosage for oxidizing propoxur in this system. Hydrogen peroxide can increase the oxidation rate with increasing its initial concentration. There was no obvious difference in the rate of propoxur oxidation at the initial pH of 4, 6 and 9, and the final pHs of reaction solutions were around 5.5. However, propoxur degraded slower at initial pH 2, and the pH did not vary during the period of photocatalytic reaction. The photocatalytic oxidation of propoxur using TiO2 suspensions as the photocatalyst was reaction‐controlled as indicated by the activation energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号