首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1688篇
  免费   16篇
  国内免费   71篇
安全科学   76篇
废物处理   186篇
环保管理   183篇
综合类   160篇
基础理论   277篇
环境理论   2篇
污染及防治   649篇
评价与监测   163篇
社会与环境   63篇
灾害及防治   16篇
  2023年   20篇
  2022年   37篇
  2021年   36篇
  2020年   15篇
  2019年   29篇
  2018年   44篇
  2017年   58篇
  2016年   81篇
  2015年   42篇
  2014年   71篇
  2013年   140篇
  2012年   105篇
  2011年   119篇
  2010年   96篇
  2009年   109篇
  2008年   122篇
  2007年   108篇
  2006年   100篇
  2005年   87篇
  2004年   83篇
  2003年   57篇
  2002年   62篇
  2001年   47篇
  2000年   21篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有1775条查询结果,搜索用时 156 毫秒
131.
Factors affecting EDTA extraction of lead from lead-contaminated soils   总被引:9,自引:0,他引:9  
Kim C  Lee Y  Ong SK 《Chemosphere》2003,51(9):845-853
The effects of solution:soil ratio, major cations present in soils, and the ethylenediaminetetraacetic acid (EDTA):lead stoichiometric ratio on the extraction of lead using EDTA were studied for three different Superfund site soils, one rifle range soil, and one artificially lead-contaminated soil. Extraction of lead from the lead-contaminated soils was not affected by a solution:soil ratio as low as 3:1 but instead was dependent on the quantity of EDTA present. Results of the experiments showed that the extraction efficiencies were different for each soil. If sufficiently large amount of EDTA was applied (EDTA-Pb stoichiometric ratio greater than 10), most of the lead were extracted for all soils tested except for a Superfund site soil from a lead mining area. The differences in extraction efficiencies may be due to the major cations present in soils which may compete with lead for active sites on EDTA. For example, iron ions most probably competed strongly with lead for EDTA ligand sites for pH less than 6. In addition, copper and zinc may potentially compete with lead for EDTA ligand sites. Experimental results showed that addition of EDTA to the soil resulted in a very large increase in metals solubility. The total molar concentrations of major cations extracted were as much as 20 times the added molar concentration of EDTA. For some of the soils tested, lead may have been occluded in the iron oxides present in the soil which may affect lead extraction. While major cations present in the soil may be one of the factors affecting lead extraction efficiency, the type of lead species present also play a role.  相似文献   
132.
Kim J  Rhee GY 《Chemosphere》2001,44(6):1413-1420
The effect of sediment sources on the selection of polychlorinated biphenyl (PCB) dechlorinating competence was investigated using sediments from two different locations, the Grasse River and Owasco Lake. These two sediments had a similar organic carbon content but different particle size distribution. The two PCB-free sediments were spiked with Aroclor 1248 and inoculated with microorganisms from the Reynolds and General Motors sites in the St. Lawrence River, which exhibited different dechlorination patterns. When each inoculum was serially transferred into fresh sediments four times (every 8-10 weeks), they still maintained the initial dechlorination patterns regardless, the source of sediments and the number of transfers, and dechlorination patterns of the two inocula in the same sediments did not converge. In a parallel approach, when the acclimated microorganisms from the Reynolds site were inoculated into fresh sediments from both sources as well as sediments enriched with organic carbon (2%, w/v), the dechlorination pattern remained unchanged after a 40-week incubation. These results suggest that the sediment characteristics or organic carbon content did not play a role in the selection of dechlorinating populations.  相似文献   
133.
Kim Y  Yang SH  Kim M  Shin DC 《Chemosphere》2001,43(4-7):985-987
This study measured the levels of 17 congeners of PCDDs/PCDFs in serum to compare the levels between potentially exposed workers at an industrial waste incinerator and any residents with no known exposures. The 1,2,3,6,7,8- and 1,2,3,7,8,9-HxCDD were detected in serum of workers but in controls. Likewise, 1,2,3,7,8-PeCDF, 1,2,3,6,7,8- and 1,2,3,7,8,9-HxCDF were detected only in serum of workers. The international toxic equivalent (TEQ) levels of PCDDs/PCDFs in sera of workers are much higher than in controls. Among PCDDs, the proportion of total concentration and TEQ level is dominated predominantly by 1,2,3,6,7,8- and 1,2,3,7,8,9-HxCDD. We need extensive studies to estimate human exposure and are continuing this investigation.  相似文献   
134.
The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic-related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24-hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature-resolved carbon fractions also enhanced separations of carbon-rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate-rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature-resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5.  相似文献   
135.
Ryu JY  Mulholland JA  Oh JE  Nakahata DT  Kim DH 《Chemosphere》2004,55(11):1447-1455
A model for predicting the distribution of dibenzofuran and polychlorinated dibenzofuran (PCDF) congeners from a distribution of phenols was developed. The model is based on a simplified chemical mechanism. Relative rate constants and reaction order with respect to phenol precursors were derived from experimental results using single phenols and equal molar mixtures of up to four phenols. For validation, experiments were performed at three temperatures using a distribution of phenol and 19 chlorinated phenols as measured in municipal waste incinerator exhaust gas. Comparison of experimental measurements and model predictions for PCDF isomer distributions and homologue pattern shows agreement within measurement uncertainty. The R-squared correlation coefficient exceeds 0.9 for all PCDF isomer distributions and the distribution of PCDF homologues. These results demonstrate that the distribution of dibenzofuran and the 135 PCDF congeners from gas-phase condensation of phenol and chlorinated phenols can be predicted from measurement of the distribution of phenol and the 19 chlorinated phenol congeners.  相似文献   
136.
This study was conducted to evaluate the potential applicability of an in situ biological reactive barrier system to treat nitrate-contaminated bank filtrate. The reactive barrier consisted of sulfur granules as an electron donor and autotrophic sulfur-oxidizing bacteria as a biological component. Limestone was also used to provide alkalinity. The results showed that the autotrophic sulfur oxidizers were successfully colonized on the surfaces of the sulfur particles and removed nitrate from synthetic bank filtrate. The sulfur-oxidizing activity continuously increased with time and then was maintained or slightly decreased after five days of column operation. Maximum nitrate removal efficiency and sulfur oxidation rate were observed at near neutral pH. Over 90% of the initial nitrate dissolved in synthetic bank filtrate was removed in all columns tested with some nitrite accumulation. However, nitrite accumulation was observed mainly during the initial operation period, and the concentration markedly diminished with time. The nitrite concentration in effluent was less than 2 mg-N/l after 12 days of column operation. When influent nitrate concentrations were 30, 40, and 60 mg-N/l and sulfur content in column was 75%, half-order autotrophic denitrification reaction rate constants were 31.73 x 10(-3), 33.3 x 10(-3), and 36.4 x 10(-3) mg(1/2)/l(1/2)min, respectively. Our data on the nitrate distribution profile along the column suggest that an appropriate wall thickness of a reactive barrier for autotrophic denitrification may be 30 cm when influent nitrate concentration is less than 60 mg-N/l.  相似文献   
137.
The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate.  相似文献   
138.
Source identification of atlanta aerosol by positive matrix factorization   总被引:3,自引:0,他引:3  
Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles < or = 2.5 microm in aerodynamic diameter) samples (PM2.5), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 microm in aerodynamic diameter) samples (PM10-2.5). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4(2-) -rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO(3-) -rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4(2-) -rich and NO(3-) -rich secondary aerosols were associated with NH(4+). The SO4(2-) -rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO(3-)-rich secondary aerosol (16%), SO4(2-) -rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.  相似文献   
139.
The effect of sequencing batch reactor operation on presence and concentration of tetracycline-resistant organisms was studied as a function of organic loading rate (OLR) and solids retention time (SRT), with and without supplemented influent tetracycline. These effects were evaluated using bacterial counts, bacterial production, system growth rate, and percent resistance. These evaluation parameters were applied to both intermediate resistant and resistant heterotrophs, enterics, and lactose fermenters. Tetracycline intermediate resistant and resistant bacteria are defined as the survival of colonies on agar with 5 and 20 mg/L tetracycline, respectively. Based on these studies, increases in influent tetracycline concentration and OLR resulted in amplification of tetracycline resistance. Decreases in SRT also resulted in amplification of tetracycline resistance.  相似文献   
140.
To develop standard toxic gas mixtures, it is essential to identify adsorption characteristics of each toxic gas on the inner surface of a gas cylinder. Thus, this study quantified adsorbed amounts of the four toxic gases (nitric oxide [NO], nitrogen dioxide [NO2], sulfur dioxide [SO2], and hydrogen chloride [HCl]) on the inner surface of aluminum cylinders and nickel-coated manganese steel cylinders. After eluting adsorbed gases on the inside of cylinders with ultrapure water, a quantitative analysis was performed on an ion chromatograph. To evaluate the reaction characteristics of the toxic gases with cylinder materials, quantitative analyses of nickel (Ni), iron (Fe), and aluminum (Al) were also performed by inductively coupled plasma optical emission spectrometry (ICP-OES). It was found that the amounts of NO, NO2, and SO2 adsorbed on the inner surface of aluminum cylinders were less than 1.0% at the level of 100 μmol/mol mixing ratio, whereas the signal for most heavy metal elements were below their respective detection limits. This study found that the amounts of HCl adsorbed on the inner surface of nickel-coated manganese steel cylinders were less than 5% at the level of 100 μmol/mol mixing ratio, whereas Ni (86 μmol) and Fe (28 μmol) were detected in the same cylinders. It was revealed that the adsorption mainly took place via the reaction of HCl with inner surface material of nickel-coated manganese steel cylinders. On the other hand, in the case of aluminum cylinders, the amounts of the adsorption were determined to be less than 1% at the level of HCl 100 μmol/mol mixing ratio, whereas most of Ni, Fe, and Al were detected at levels similar to their limits of detection. As a result, this study found that aluminum cylinders are more suitable for preparing HCl gas mixtures than nickel-coated manganese steel cylinders.

Implications: To develop a standard toxic gas mixture, it is essential to understand the adsorption characteristics of each toxic gas inside a gas cylinder. It was found that the amounts of NO, NO2, and SO2 adsorbed inside aluminum cylinders were less than 1.0% at the level of 100 μmol/mol mixing ratio. The amounts of HCl adsorbed inside nickel-coated manganese steel cylinders were less than 5% at the level of 100 μmol/mol mixing ratio, whereas those inside aluminum cylinders were less than 1%, indicating that aluminum cylinders are more suitable for preparing HCl gas mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号