首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
安全科学   2篇
环保管理   3篇
综合类   4篇
基础理论   3篇
污染及防治   14篇
评价与监测   3篇
社会与环境   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1992年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
11.
12.
Tree species effect on the redistribution of soil metals   总被引:1,自引:0,他引:1  
Phytostabilization of metals using trees is often promoted although the influence of different tree species on the mobilization of metals is not yet clear. Soil and biomass were sampled 33 years after planting four tree species (Quercus robur, Fraxinus excelsior, Acer pseudoplatanus, Populus 'Robusta') in a plot experiment on dredged sediment. Poplar took up high amounts of Cd and Zn and this was associated with increased Cd and Zn concentrations in the upper soil layer. The other species contained normal concentrations of Cd, Cu, Cr, Pb and Zn in their tissues. Oak acidified the soil more than the other species and caused a decrease in the concentration of metals in the upper soil layer. The pH under poplar was lower than expected and associated with high carbon concentrations in the top soil. This might be assigned to retardation of the litter decomposition due to elevated Cd and Zn concentrations in the litter.  相似文献   
13.
Phytoextraction of metals from soils: how far from practice?   总被引:2,自引:0,他引:2  
For most trace elements, the technique of phytoextraction needs significant improvements to become practically feasible. Calculations for Cd revealed that the amount of Cd taken up by Thlaspi caerulescens or Salix spp. needs at least to be the double of the present amount to slightly decrease the Cd concentration in the upper 0.5m of the soil within a period of 10 years. Additionally, metals taken up by the plants might pose an important risk. Alternatives as bioavailable contaminant stripping and phytostabilization might be more appropriate.  相似文献   
14.
15.
The flux of dissolved organic carbon (DOC) in soil facilitates transport of nutrients and contaminants in soil. There is little information on DOC fluxes and the relationship between DOC concentration and water flux in agricultural soils. The DOC fluxes and concentrations were measured during 2.5 yr using 30 automatic equilibrium tension plate lysimeters (AETPLs) at 0.4 m and 30 AETPLs at 1.20-m depth in a bare luvisol, previously used as an arable soil. Average annual DOC fluxes of the 30 AETPLS were 4.9 g C m(-2) y(-1) at 0.4 m and 2.4 g C m(-2) y(-1) at 1.2 m depth. The average leachate DOC concentrations were 17 mg C L(-1) (0.4 m) and 9 mg C L(-1) (1.2 m). The DOC concentrations were unrelated to soil moisture content or average temperature and rarely dropped below 9 mg C L(-1) (0.4 m) and 5 mg C L(-1) (1.2 m). The variability in cumulative DOC fluxes among the plates was positively related to leachate volume and not to average DOC concentrations at both depths. This suggests that water fluxes are the main determinants of spatial variability in DOC fluxes. However, the largest DOC concentrations were inversely proportional to the mean water velocity between succeeding sampling periods, suggesting that the maximal net DOC mobilization rate in the topsoil is limited. Elevated DOC concentrations, up to 90 mg C L(-1), were only observed at low water velocities, reducing the risks of DOC-facilitated transport of contaminants to groundwater. The study emphasizes that water flux and velocity are important parameters for DOC fluxes and concentrations.  相似文献   
16.
17.
BOD5 dates back to 1912 when the Royal Commission decided to use the mean residence time of water in the rivers of England, 5 days, as a standard to measure the biochemical oxygen demand. Initially designed to protect the quality of river waters from extensive sewage discharge, the use of BOD5 has been quickly extended to waste water treatment plants (WWTPs) to monitor their efficiency on a daily basis. The measurement has been automatized but remains a tedious, time- and resource-consuming analysis. We have cross-validated a surrogate BOD5 method on two sites in France and in the USA with a total of 109 samples. This method uses a fluorescent redox indicator on a 96-well microplate to measure microbial catabolic activity for a large number of samples simultaneously. Three statistical tests were used to compare surrogate and reference methods and showed robust equivalence.  相似文献   
18.
19.
Sorption kinetics and its effects on retention and leaching.   总被引:1,自引:0,他引:1  
Sorption of pesticides to substrates used in biopurification systems is important as it controls the system's efficiency. Ideally, pesticide sorption should occur fast so that leaching of the pesticide in the biopurification system is minimized. Although modeling of pesticide transport commonly assumes equilibrium, this may not always be true in practice. Sorption kinetics have to be taken into account. This study investigated the batch sorption kinetics of linuron, isoproturon, metalaxyl, isoxaben and lenacil on substrates commonly used in a biopurification system, i.e. cow manure, straw, willow chopping, sandy loam soil, coconut chips, garden waste compost and peat mix. The first-order sorption kinetics model was fitted to the observed pesticide concentrations versus time resulting in an estimated kinetic rate constant alpha. Sorption appeared to be fast for the pesticides linuron and isoxaben, pesticides which were classified as immobile, while less mobile pesticides displayed an overall slower sorption. However, the substrate does not seem to be the main parameter influencing the sorption kinetics. Coconut chips, which is a substrate with a high organic matter content showed slow sorption for most of the pesticides. The effect of different estimated alpha values on the breakthrough of pesticides through a biopurification system was evaluated using the HYDRUS 1D model. Significant differences in leaching behavior were observed as a result of the obtained differences in sorption kinetics.  相似文献   
20.
Many fundamental features of a sampling program are determined by the heterogeneity of the object under study and the settings for the error (alpha), the power (beta), the effect size (ES), the number of replicate samples, and sample support, which is a feature that is often overlooked. The number of replicates, alpha, beta, ES, and sample support are interconnected. The effect of the sample support and its shape on the required number of replicate samples was investigated by means of a resampling method. The method was applied to a simulated distribution of Cd in the crown of a Salix fragilis L. tree. Increasing the dimensions of the sample support results in a decrease in the variance of the element concentration under study. Analysis of the variance is often the foundation of statistical tests, therefore, valid statistical testing requires the use of a fixed sample support during the experiment. This requirement might be difficult to meet in time-series analyses and long-term monitoring programs. Sample supports have their largest dimension in the direction with the largest heterogeneity, i.e. the direction representing the crown height, and this will give more accurate results than supports with other shapes. Taking the relationships between the sample support and the variance of the element concentrations in tree crowns into account provides guidelines for sampling efficiency in terms of precision and costs. In terms of time, the optimal support to test whether the average Cd concentration of the crown exceeds a threshold value is 0.405 m3 (alpha = 0.05, beta = 0.20, ES = 1.0 mg kg(-1) dry mass). The average weight of this support is 23 g dry mass, and 11 replicate samples need to be taken. It should be noted that in this case the optimal support applies to Cd under conditions similar to those of the simulation, but not necessarily all the examinations for this tree species, element, and hypothesis test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号