首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   9篇
  国内免费   23篇
安全科学   34篇
废物处理   76篇
环保管理   68篇
综合类   51篇
基础理论   129篇
环境理论   1篇
污染及防治   244篇
评价与监测   119篇
社会与环境   36篇
灾害及防治   5篇
  2023年   11篇
  2022年   90篇
  2021年   72篇
  2020年   16篇
  2019年   30篇
  2018年   36篇
  2017年   44篇
  2016年   48篇
  2015年   33篇
  2014年   40篇
  2013年   97篇
  2012年   39篇
  2011年   49篇
  2010年   22篇
  2009年   33篇
  2008年   17篇
  2007年   17篇
  2006年   10篇
  2005年   8篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有763条查询结果,搜索用时 15 毫秒
741.
Environmental Science and Pollution Research - The chemical contaminants in dried fish are of great food safety concern and an emerging public health issue in Bangladesh. The aim of this study was...  相似文献   
742.
Environmental Science and Pollution Research - Location-routing problem is a combination of facility location problem and vehicle routing problem. Numerous logistics problems have been extended to...  相似文献   
743.

Heavy metals in higher concentrations are often encountered in domestic sewage of developing and under-developed countries. High metallic concentrations can stress reactor sludge biomass morphology impeding its performance in organics reduction. However, the extent of damage and ability of sludge biomass to recover from the metallic stress is not fully understood. Also, there is no protocol to identify and prevent the sludge biomass from metallic stress in fully functional sewage treatment plants (STPs). This study investigates performance, metabolic activity, morphology, and settling characteristics of the sludge biomass under different Co(II) stress conditions. The extent of recovery in biomass, when the supply of Co(II) metal ion was discontinued in the inlet stream, was explored. The study also proposed a protocol based on simple settling characteristics of sludge biomass to get an early indication of metal infiltration to prevent potential damage to the biomass morphology. Four sequencing batch reactors (SBRs) with Co(II) ion concentrations of 0 (designated as RCo0), 5 (RCo5), 25 (RCo25), and 75 mg/L (RCo75) in the feed were operated with a cycle time of 12 h. Reactors were operated for 35 days with Co(II) in the feed (termed as stressed phase operation) followed by 24 days of operation without Co(II) in the feed (termed as recovery phase operation). Results show that COD removal in reactor RCo75 reduced to 48% on the 10th day of stressed phase operation, showing a lag in COD removal due to metallic stress. The activity of biomass in reactors RCo5, RCo25, and RCo75 was reduced by 39%, 45%, and 49%, respectively, in the stressed phase compared to the biomass in control reactor. Recovery in COD removal efficiency and specific biomass activity were observed in all the reactors after the removal of metallic stress. The settleability of sludge biomass in reactors RCo25 and RCo75 was significantly affected. Transformation in the shape of flocs in reactor RCo25 and RCo75 biomasses revealed the prolonged effect of metallic stress, which was observed to be irreversible even during the recovery phase operation.

  相似文献   
744.
Environmental Science and Pollution Research - This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses....  相似文献   
745.
Environmental Science and Pollution Research - Despite attempts to enhance the recycling of waste printed circuit boards (WPCBs), the simultaneous recovery of major metals of WPCBs using an...  相似文献   
746.

This study aims to shed light on the seasonal behavior of yttrium and rare earth elements (YREEs) in the Urmia Aquifer (UA), in the immediate vicinity of Urmia Lake (UL) in Iran. Samples of groundwater, collected under dry and wet conditions in coastal wells of UA, suggest a large degree of variability in both YREE abundance and normalized patterns. Although weathering or water-rock interactions (between the surface/groundwater and rock samples) were predicted to be the most probable source in explaining YREEs in groundwater samples, results to the contrary indicate that the groundwater do not inherit aquifer rock-like YREE signatures in the study area; this might be due to the relative stability of YREEs during the process of water-rock interactions, which suggest that methods based on YREEs can be beneficial in discrimination of water sources. Furthermore, findings demonstrated no significant relationship between Ce/Ce* and salinity (0.08 and 0.05 in wet and dry seasons, respectively), and between Eu/Eu* and salinity (0.1 and ?0.04 in wet and dry seasons, respectively). Dissimilarity of patterns of YREEs in rock and water samples reveals YREEs as no conservative tracers in determining the UL saltwater intrusion into coastal groundwater. Therefore, the groundwater YREE concentrations and fractionation patterns in UA warrant controlling by coastal aquifer need to be controlled by other chemical weathering, adsorption, desorption, and solution complexation reactions. Finally, comparison of REE concentration values in groundwater samples with corresponding indicative admissible drinking water concentrations (IAC) demonstrated their suitability for drinking purposes.

  相似文献   
747.
Knowing the fraction of methane (CH4) oxidized in landfill cover soils is an important step in estimating the total CH4 emissions from any landfill. Predicting CH4 oxidation in landfill cover soils is a difficult task because it is controlled by a number of biological and environmental factors. This study proposes an artificial neural network (ANN) approach using feedforward backpropagation to predict CH4 oxidation in landfill cover soil in relation to air temperature, soil moisture content, oxygen (O2) concentration at a depth of 10 cm in cover soil, and CH4 concentration at the bottom of cover soil. The optimum ANN model giving the lowest mean square error (MSE) was configured from three layers, with 12 and 9 neurons at the first and the second hidden layers, respectively, log-sigmoid (logsig) transfer function at the hidden and output layers, and the Levenberg-Marquardt training algorithm. This study revealed that the ANN oxidation model can predict CH4 oxidation with a MSE of 0.0082, a coefficient of determination (R 2) between the measured and predicted outputs of up to 0.937, and a model efficiency (E) of 0.8978. To conclude, further developments of the proposed ANN model are required to generalize and apply the model to other landfills with different cover soil properties.

Implications:

To date, no attempts have been made to predict the percent of CH4 oxidation within landfill cover soils using an ANN. This paper presents modeling of CH4 oxidation in landfill cover soil using ANN based on field measurements data under tropical climate conditions in Malaysia. The proposed ANN oxidation model can be used to predict the percentage of CH4 oxidation from other landfills with similar climate conditions, cover soil texture, and other properties. The predicted value of CH4 oxidation can be used in conjunction with the Intergovernmental Panel on Climate Change (IPCC) First Order Decay (FOD) model by landfill operators to accurately estimate total CH4 emission and how much it contributes to global warming.  相似文献   

748.
The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m3, respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: ‘diesel’ (56.3 % of total PAHs on average), ‘gasoline’ (15.5 %), ‘wood combustion, and incineration’ (13 %), ‘industry’ (9.2 %), and ‘road soil particle’ (6.0 %). The four n-alkane source factors identified were: ‘petrogenic’ (65 % of total n-alkanes on average), ‘mixture of petrogenic and biomass burning’ (15 %), ‘mixture of biogenic and fossil fuel’ (11.5 %), and ‘biogenic’ (8.5 %). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4 % of total PAHs and 5.0 % of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area of Tehran has been effective in reducing the PAHs concentration.  相似文献   
749.
Carrier agent as one of the synthetic persistent molecules present in textile effluents considered as one of the most highly toxic, carcinogenic and serious inhibitor of the microbial respirometric activity. This chemical is used as accelerants in the dyeing or printing the hydrophobic fibers by dispersed dyes. Hydrophobic polypropylene (PP) fibers cannot be dyed by conventional dyeing process due to the absence of dye sites in the molecular chain and their high crystallinity. This study presents a carrier-free exhaust dyeing as an environmentally friendlier and cleaner process. In order to produce dyeable PP fibers, the PP was blended and melt spun with poly(butylene terephthalate) (PBT) at various ratios. First PP and PBT granules at blend ratios of 5, 10, 20, 30, 40 percent of PBT dispersed phase were physically mixed then the melt spinning of blended samples was carried out by a Maddock mixing zone extruder. The results showed that suitable exhaust dyeing process without using any carrier agents was possible for all PP/PBT alloy fiber samples. The dye uptake of samples significantly increased by increasing the PBT dispersed phase content. By increasing the PBT dispersed phase content decrease in the crystallinity percent resulting in significant enhancement in dye uptake of the alloy fiber samples was observed. A degree of four polynomial equation for dye uptake against blend ratio was obtained by which the optimum blend ratio was 72/28 percent of PP/PBT alloy fiber composition. In all alloy fiber dyed samples uniform coloration was observed. No considerable changes in the mechanical properties for dyed samples against undyed samples were observed. Interestingly, the best mechanical property among alloy fiber samples was observed in the sample containing 30 percent PBT dispersed phase which approximately corresponds to optimum blend ratio gained from mathematical calculations. In all PP/PBT alloy fiber samples strong fastness to soaping and very good to excellent fastness to light were achieved.  相似文献   
750.
A novel hydrometallurgical process was proposed for selective recovery of Cu, Ag, Au and Pd from waste printed circuit boards (PCBs). More than 99% of copper content was dissolved by using two consecutive sulfuric acid leaching steps in the presence of H2O2 as oxidizing agents. The solid residue of 2nd leaching step was treated by acidic thiourea in the presence of ferric iron as oxidizing agent and 85.76% Au and 71.36% Ag dissolution was achieved. The precipitation of Au and Ag from acidic thiourea leachate was investigated by using different amounts of sodium borohydride (SBH) as a reducing agent. The leaching of Pd and remained gold from the solid reside of 3rd leaching step was performed in NaClO-HCl-H2O2 leaching system and the effect of different parameters was investigated. The leaching of Pd and specially Au increased by increasing the NaClO concentration up to 10 V% and any further increasing the NaClO concentration has a negligible effect. The leaching of Pd and Au increased by increasing the HCl concentration from 2.5 to 5 M. The leaching of Pd and Au were endothermic and raising the temperature had a positive effect on leaching efficiency. The kinetics of Pd leaching was quite fast and after 30 min complete leaching of Pd was achieved, while the leaching of Au need a longer contact time. The best conditions for leaching of Pd and Au in NaClO-HCl-H2O2 leaching system were determined to be 5 M HCl, 1 V% H2O2, 10 V% NaClO at 336 K for 3 h with a solid/liquid ratio of 1/10. 100% of Pd and Au of what was in the chloride leachate were precipitated by using 2 g/L SBH. Finally, a process flow sheet for the recovery of Cu, Ag, Au and Pd from PCB was proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号