首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  国内免费   2篇
安全科学   4篇
废物处理   13篇
综合类   8篇
基础理论   14篇
污染及防治   16篇
评价与监测   3篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1956年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
31.
32.
Males of many tephritid fruit fly species of the genus Bactrocera show a very strong affinity to methyl eugenol (ME). An attracted male compulsively ingests ME, which is then biotransformed before its metabolites are accumulated into the rectal gland. The glandular organ is known to serve as a reservoir for sex pheromone in some species. Upon ME-feeding, males of the oriental fruit fly, Bactrocera dorsalis, selectively accumulated two metabolites, 2-allyl-4,5-dimethoxyphenol (DMP) and (E)-coniferyl alcohol (E-CF), in the rectal pheromone gland. We compared the profiles of phenylpropanoid metabolites accumulated by three other species of very high economic and quarantine importance—Bactrocera invadens, Bactrocera zonata and Bactrocera correcta, with that of B. dorsalis. Males of each species were fed artificially on ME and the metabolites stored in the rectal glands were examined by means of chromatography and spectroscopy. Similar to B. dorsalis, males of laboratory-raised B. invadens accumulated DMP and E-CF, in almost equal quantities, in the rectal sac. The sum of DMP and E-CF increased gradually with time after ME consumption and reached as high as 150 μg/male 2 days post ME-feeding. Wild males of B. invadens captured in Kenya also possessed both the compounds in varying quantities. In contrast, males of B. zonata accumulated DMP and (Z)-coniferyl alcohol (Z-CF) in an approximate ratio of 1:1; whereas B. correcta is known to convert ME to (Z)-3,4-dimethoxycinnamyl alcohol (Z-DMC) and Z-CF also in an approximately 1:1 ratio. Thus, there are three types of binary combinations of rectal phenylpropanoid volatiles (i.e. DMP + E-CF; DMP + Z-CF; Z-CF + Z-DMC) utilized among the four Bactrocera species. Such differences in phenylpropanoid ingredients may play a critical role in differentiating these species if encountered in the natural habitat. In this context, the two putative sibling species—B. invadens and B. dorsalis, possess the identical subset of rectal volatiles (DMP and E-CF) in a similar proportion. Furthermore, the phylogenetic analyses of the four Bactrocera species by comparing nucleotide sequences in the mitochondrial genes showed that B. invadens clearly belonged to the same clade as B. dorsalis species. Therefore, we consider the two as the same biological species, and certainly not distinct.  相似文献   
33.
To estimate the impact of CO2-driven ocean acidification on the early life stages of gastropods, the effects of increased partial pressure of seawater carbon dioxide (pCO2) (800–2,000 μatm) on the early developmental stages and larval shell length of the commercially important gastropod, the horned turban snail, Turbo cornutus were investigated. Increase in experimental seawater pCO2 had an increasingly negative impact on the early developmental rate; the proportion of embryos or larvae displaying retarded development increased at higher pCO2. The proportion of embryos that developed to the 4-cell stage at 2 h after fertilization decreased linearly with increasing pCO2. At ~1,000 μatm pCO2, retarded development was observed in ~50 % of larvae. No embryos developed to the 4-cell stage at 2,000 μatm pCO2 within 2 h of fertilization. A similar trend continued until 24–26 h after fertilization; the proportion of larvae attaining veliger stage by 24–26 h also decreased with increasing pCO2. The shell length of T. cornutus veligers decreased gradually as seawater pCO2 increased, but markedly decreased in seawater under nearly unsaturated and unsaturated conditions (≤1.04) of the aragonite saturation state (Ω aragonite). The results indicate that increased pCO2 seawater has a progressive and acute effect on embryonic and larval T. cornutus, and imply that the extended early developmental period and/or the downsized larval shell produced by ocean acidification will have a negative impact on survival, settlement and recruitment well into the future.  相似文献   
34.
35.
Jones  D. A.  Kanazawa  A.  Ono  K. 《Marine Biology》1979,54(3):261-267
Fatty acid biosynthesis in the larval stages of Penaeus japonicus Bate was examined by feeding microencapsulated diets containing (1-14C) palmitic acid, and fat-free diets supplemented with defined fatty acids. Highest larval growth rates were achieved on diets containing Tapes philippinarum lipid and, when defined fatty acids were substituted, on diets containing 20:63 fatty acid. The radioactive tracer experiments indicate that 16:17, 18:0 and 18:19 fatty acids may be synthesised from palmitic acid and that P. japonicus larvae may possess the ability to elongate 18:33 to 20:53 and 22:63, and 18:26 to 20:46. However, the rates of these reactions appear to be too slow to meet the larval requirements for essential fatty acids and the 3 series of polyunsaturated fatty acids must be provided in the diet.  相似文献   
36.
A three-dimensional/high-resolution transport model for persistent organic pollutants (POPs) has been developed for the East China Sea (ECS). The POPs model has four compartments (gaseous, dissolved, phytoplankton-bound, and detritus-bound phases) and includes processes for diffusive air-water exchange, phytoplankton uptake/depuration to POPs, decomposition of dissolved phase, vertical sinking of phytoplankton, detritus production by phytoplankton mortality, and vertical sinking and decomposition of detritus. The POPs model is coupled with an ocean circulation model that can reproduce the seasonal variation in physical variables to represent the advection and diffusion of POPs. We applied the POPs model to the polychlorinated biphenyl congener 153 (PCB 153) from the atmosphere and examined the behavior of PCB 153 in the ocean. The model showed a remarkable seasonal variability of PCB 153. Concentrations in the dissolved and particulate phases are high in winter (January-March) and low in summer (July-September). In coastal regions, where chlorophyll a concentration is high, horizontal and vertical distributions in the dissolved and particulate PCB 153 concentrations are strongly affected by phytoplankton uptake. The sensitivity experiments on the dynamics of PCB 153 suggested that a change of Henry’s law constant associated with water temperature is the major factor controlling the seasonal variability of PCB 153. The model-based yearly mass balance of PCB 153 in the ECS indicated that most of the atmospheric input (35.5 kg year−1) is removed by the horizontal advection outside the ECS (19.0 kg year−1) and accumulates to the sea bottom by vertical sinking (15.7 kg year−1). For comparison with PCB 153, we also conducted simulations for PCB 52, 101, and 180. The seasonal variations are similar to that of PCB 153. The mass balance of PCB 52 that has short half-life time and less hydrophobic property shows the different results compared with PCB 101, 153, and 180.  相似文献   
37.
ABSTRACT

Particulate matter ≤10 μm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K f) were found to change seasonally, ranging from 1.3 × 10?5 to 5.1 × 10?5 for sand flux measured at 15 cm above the surface (q 15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F?=?K f ×?q 15). The maximum hourly PM10 emission rate from the study area was 76 g/m2·hr (10-m wind speed?=?23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2·day, and annual emissions at 1095 g/m2·yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 μg/m3 (slope?=?0.89, R 2?=?0.77).

IMPLICATIONS Under a U.S. Environmental Protection Agency (EPA)-approved plan, the method described in this paper has been used since 2000 at Owens Lake, CA, to identify and successfully mitigate dust from over 100 km2 of the dry lakebed. It continues to be used to monitor dust control compliance at Owens Lake. Scaled-down versions of the Owens Lake network can be implemented in other areas in a manner similar to the Mono Lake study. Once K-factors are established, low-cost CSC samplers (about $35 U.S.) may be used for periodic monitoring (e.g., daily, weekly, or monthly) to estimate PM10 emissions or to evaluate dust control compliance.  相似文献   
38.
39.
A test series involving direct right-side impact of a moving wall on unsupported, unrestrained cadavers with no arms was undertaken to better understand human kinematics and injury mechanisms during side impact at realistic speeds. The tests conducted provided a unique opportunity for a detailed analysis of the kinematics resulting from side impact. Specifically, this study evaluated the 3-dimensional (3D) kinematics of 3 unrestrained male cadavers subjected to lateral impact by a multi-element load wall carried by a pneumatically propelled rail-mounted sled reproducing a conceptual side crash impact. Three translations and 3 rotations characterize the movement of a solid body in the space, the 6 degrees of freedom (6DoF) kinematics of 15 bone segments were obtained from the 3D marker motions and computed tomography (CT)-defined relationships between the maker array mounts and the bones. The moving wall initially made contact with the lateral aspect of the pelvis, which initiated lateral motion of the spinal segments beginning with the pelvis and moving sequentially up through the lumbar spine to the thorax. Analyzing the 6DoF motions kinematics of the ribs and sternum followed right shoulder contact with the wall. Overall thoracic motion was assessed by combining the thoracic bone segments as a single rigid body. The kinematic data presented in this research provides quantified subject responses and boundary condition interactions that are currently unavailable for lateral impact.  相似文献   
40.
There is little known data characterizing the biomechanical responses of the human head and neck under direct head loading conditions. However, the evaluation of the appropriateness of current crash test dummy head-neck systems is easily accomplished. Such an effort, using experimental means, generates and provides characterizations of human head-neck response to several direct head loading conditions. Low-level impact loads were applied to the head and face of volunteers and dummies. The resultant forces and moments at the occipital condyle were calculated. For the volunteers, activation of the neck musculature was determined using electromyography (EMG). In addition, cervical vertebral motions of the volunteers have been taken by means of X-ray cineradiography. The Ethics Committee of Tsukuba University approved the protocol of the experiments in advance. External force of about 210 N was applied to the head and face of five volunteers with an average age of 25 for the duration of 100 msec or so, via a strap at one of four locations in various directions: (1) an upward load applied to the chin, (2) a rearward load applied to the chin without facial mask, (3) a rearward load applied to the chin with the facial mask, and (4) a rearward load applied to the forehead. The same impact force as those for the human volunteers was also applied to HY-III, THOR, and BioRID. We found that cervical vertebral motions differ markedly according to the difference in impact loading condition. Some particular characteristics are also found, such as the flexion or extension of the upper cervical vertebrae (C0, C1, and C2) or middle cervical vertebrae (C3-C4), showing that the modes of cervical vertebral motions are markedly different among the different loading conditions. We also found that the biofidelity of dummies to neck response characteristics of the volunteers at the low-level impact loads is in the order of BioRID, THOR, and HY-III. It is relevant in this regard that the BioRID dummy was designed for a low-severity impact environment, whereas THOR and HY-III were optimized for higher-severity impacts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号