首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   7篇
  国内免费   7篇
安全科学   6篇
废物处理   6篇
环保管理   29篇
综合类   17篇
基础理论   19篇
污染及防治   41篇
评价与监测   20篇
社会与环境   9篇
灾害及防治   1篇
  2023年   8篇
  2022年   10篇
  2021年   10篇
  2020年   1篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   1篇
  2014年   6篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   10篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2002年   2篇
  1997年   1篇
  1994年   1篇
  1989年   1篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1961年   1篇
排序方式: 共有148条查询结果,搜索用时 31 毫秒
11.
This paper presents the results of the lidar experiments that have been performed during January 1989 through August 1990 to study the aerosol vertical distributions in the nocturnal atmosphere and their comparison with near-simultaneous aerological soundings for environmental monitoring. During the study period, the aerosol distributions showed significant stratified aerosol layer structures in the lower atmosphere throughout the south-west monsoon season (June-September), while these structures appear to be either erratic or absent during remaining months of the year. In addition, the aerosols present in the lowest air layers up to 200 m are found to contribute significantly (about 40%) to the aerosol loading in the nocturnal boundary layer at the lidar site. The pre-monsoon to winter ratio of mixing depth and ventilation coefficient were found to be 1.11 and 1.62, respectively. Thus the height of the mixed layer (around 350 m) and the associated ventilation coefficients suggest that early winter evenings tend to have higher pollution potential at the experimental site. The results indicate that the lidar technique has the potential to yield good information on the structure of the nocturnal atmosphere which is found to be influenced by the atmospheric stability conditions as revealed by aerological observations.  相似文献   
12.
This study explores power law relationships to estimate water flow velocity as a function of discharge and drainage area across river networks. We test the model using empirical data from 214 United States (U.S.) Geological Survey gauging stations distributed over the state of Iowa in the U.S. The empirical data are the measurements of the mean cross‐sectional velocity and concurrent discharge. The data are used to estimate parameters for a state‐wide model and to test for spatial variability for 15 large river basins contained within the state. Spatial differences among the basins are small but some parameters significantly differ from the state‐wide model. Using individual station data, the authors also explore a simpler power law model that disregards dependence on the drainage area. Overall, the study shows that including drainage area improves the model. Our study provides parameter values that can be directly incorporated into a regional scale routing model, and provides a framework for developing flow velocity models for hydraulically similar rivers in the U.S. and the world.  相似文献   
13.
Environmental Science and Pollution Research - The huge demand and consumption of DOX, its incomplete metabolism, and complex behavior in atmosphere are causing a great ecological issue, which...  相似文献   
14.
The concentrations of suspended particulate matter in the air of the Orissa Sand Complex had an average value of 128 ± 10 µg m?3 in residential areas and 170 ± 8 µg m?3 in mining areas. PM10 levels in residential areas were found to have an average of 35 ± 10 µg m?3, in mining areas 45 ± 10 µg m?3. The distribution of some elements is also discussed here. Inhalation doses were observed to be higher in summer than in winter and the rainy season. The highest dose rate was for the age group of 1 year, and health risks were found to be highest for the same. For adults, inhalation dose and health risk are 1.3 times higher in mining than in residential areas.  相似文献   
15.
Over the past few decades, the industry developed an increasing interest in using renewable, bio-based thermosetting polymers as matrix systems for composites and coating systems. In the present paper an acrylated epoxidized linseed oil (AELO) was synthesized from epoxidized linseed oil (ELO) through ring opening of the oxirane group using acrylic acid as the ring opening agent. The synthesized AELO was mixed with three different photoinitiators and cured under monochromatic conditions (???=?365?nm) at different light intensities and at different temperatures. The concentration of the initiators was aligned that all initiators absorb at 365?nm the same amount of light. The evolution of cure was monitored by using real-time infrared spectroscopy with a heated attenuated total reflection unit. The decrease of absorption in the measured spectra at 1,406?cm?1 was used to calculate the conversion of acrylic double bonds with increasing time of UV light exposure to get information about the cure kinetics for each AELO mixture at different light intensities and different temperatures. Wood substrates were coated in a preliminary work with the AELO mixtures and after UV-curing some technological coating properties like gloss, scratch resistance, adhesion, and solvent resistance were tested. In combination with the information about the cure kinetics in the present work the coating properties were correlated with the cure evolution and the final degree of double bond conversion. The found correlation can be used in the future to find optimized coating conditions for the AELO mixtures on wood substrates.  相似文献   
16.
The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO concentrations in the absence or presence of SO2 gas at 45℃. The effect of SO2 on NO oxidation and NO2 absorption was critically examined. The oxidative ability of sodium chlorite was investigated at different pH values and it was found to be a better oxidant at a pH less than 4. In acidic medium, sodium chlorite decomposed into C102 gas, which is believed to participate in NO oxidation as well as in NO2 absorption. A plausible NOx removal mechanism using acidic sodium chlorite solution has been postulated. A maximum NOx removal efficiency of about 81% has been achieved.  相似文献   
17.
Reports of enhanced atrazine degradation and reduced residual weed control have increased in recent years, sparking interest in identifying factors contributing to enhanced atrazine degradation. The objectives of this study were to (i) assess the spatial distribution of enhanced atrazine degradation in 45 commercial farm fields in northeastern Colorado (Kit Carson, Larimer, Logan, Morgan, Phillips, and Yuma counties) where selected cultural management practices and soil bio-chemo-physical properties were quantified; (ii) utilize Classification and Regression Tree (CART) Analysis to identify cultural management practices and (or) soil bio-chemophysical attributes that are associated with enhanced atrazine degradation; and (iii) translate our CART Analysis into a model that predicts relative atrazine degradation rate (rapid, moderate, or slow) as a function of known management practices and (or) soil properties. Enhanced atrazine degradation was widespread within a 300-km radius across northeastern Colorado, with approximately 44% of the fields demonstrating rapid atrazine degradation activity (laboratory-based dissipation time halflife [DT50] < 3 d). The most rapid degradation rates occurred in fields that received the most frequent atrazine applications. Classification and Regression Tree Analysis resulted in a prediction model that correctly classified soils with rapid atrazine DT50 80% of the time and soils with slow degradation (DT50 > 8 d) 62.5% of the time. Significant factors were recent atrazine use history, soil pH, and organic matter content. The presence/absence of atzC polymerase chain reaction (PCR) product was not a significant predictor variable for atrazine DT50. In conclusion, enhanced atrazine degradation is widespread in northeastern Colorado. If producers know their atrazine use history, soil pH, and OM content, they should be able to identify fields exhibiting enhanced atrazine degradation using our CART Model.  相似文献   
18.
Flavobacterium columnare (FC) and Myxobacterium sp. recorded persistently associated in fish hatchery and culture system of Himalayan and Sub - Himalayan regions were found to be pathogenic. The pH and salinity played a significant role on the pathogenicity of these potent pathogens in case of Clarias batrachus and Heteropneustes fossilis. LD50 value of FC was 10(4.5) CFU in both the fishes and those of Myxobacterium sp it was 10(6) CFU ml(-1) fish(-1). Fish challenged with F. columnare and Myxobacterium sp. (@ 0.2 ml fish(-1)) individually consisting 10(5-6) cfu ml(-1) exhibited explicit symptoms of columnaris disease and marked with ulceration and saddle back lesion on the dorsal side of body. Maximum reisolation of inoculated bacteria was recorded at pH 7.0 and 7.5 and at 0.0-0.5 (F. columnare) and 0.0-1.0% (Myxobacterium sp.) salinity. Foregoing results elucidated that F. columnare was more sensitive to salinity in comparison to Myxobacterium sp. and their pathogenicity significantly (p<0.05) depends on the salinity and pH that might be one of the physical factors to control their proliferation.  相似文献   
19.
In India, groundwater assessment units are classified as overexploited areas, critical areas, semi-critical, or safe areas based on the stage of groundwater development and long-term water level trends. Intuitively, in the safe units, wells are expected to function and have good yields. Besides, in the safe units, new wells are expected to be successful. Conversely, the expectation of a successful well or wells with good yields is much lesser in the overexploited units. However, when these expectations are not met in the field, doubts are raised about the quality of assessment and its usefulness, and there is outright distrust on the agencies assessing groundwater resource by the common man as well as on the planners, administrators, and the politicians. Therefore, there is a need to present the results in a way that does not create confusion. One of the methods is to combine the assessment results with aquifer characters using geographic information system (GIS); when this is done, a whole set of newer classes emerge, which can be mapped. These classes are termed as groundwater typologies in this study. Each typology has some characteristics or traits in common, which include basic aquifer character as well as the stage of groundwater development. Thus, a class may be safe, but if the aquifer is poor, then it is separated from a class that is safe and where the aquifer is good and so on. In Andhra Pradesh, which is taken as the case study for this purpose, eight main typologies emerged, and two of these main typologies were further divided into four subtypologies each. This new way of understanding the pattern of groundwater abstraction (using GIS) has a better visual impact. Groundwater typologies are found to be much more rational and useful in developing management strategies, rather than simple listing as overexploited areas, critical areas, semi-critical areas, and safe areas as is commonly done. The typologies so delineated indicate on the map (or table) that balanced usable groundwater is in between 5 and 6 bcm/a as against the estimated balance of 20.5 bcm/a, and it is largely in poor hard rock type of aquifers, which occupy about a third of the area of the state.  相似文献   
20.
Increased use of nitrogenous fertilizers in the intensively cultivated rice (Oryza sativa)?Cwheat (Triticum aestivum) cropping system (covers a 13.5-ha m area in South Asia) has led to the concentration of nitrates (NO3-N) in the groundwater (GW) in Haryana State of India. Six districts from the freshwater zone were selected to identify factors affecting NO3-N enrichment in GW. Water and soil samples were collected from 1,580 locations and analyzed for their chemical properties. About 3% (26,796, and 10,588 ha) of the area was estimated to be under moderately high (7.5?C10 mg l???1) and high (>10 mg l???1) risk categories, respectively. The results revealed that NO3-N was 10?C50% higher during the pre-monsoon season than in the monsoon season. Nitrate-N decreased with the increase in aquifer depth (r 2?=?0.99). Spatial and proximity analyses using ArcGIS (9.2) revealed that (1) clay material in surface and sub-surface texture restricts N leaching, (2) piedmont and rolling plains act as an N sink, and (3) perennial rivers bring a dilution effect whereas seasonal rivers provide favorable conditions for NO3 ? enrichment. The study concludes that chemical N fertilizers applied in agro-ecosystems are not the sole factor determining the NO3 in groundwater; rather, it is an integrated process governed by several other factors including physical and chemical properties of soils, proximity and type of river, and geomorphologic and geographical aspects. Therefore, future studies should adopt larger area (at least watershed scale) to understand the mechanistic pathways of NO3 enrichment in groundwater and interactive role of the natural drainage system and surrounding physical features. In addition, the study also presents a conceptual framework to describe the process of nitrate formation and leaching in piedmont plains and its transportation to the mid-plain zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号