首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   1篇
  国内免费   1篇
安全科学   14篇
环保管理   13篇
综合类   24篇
基础理论   28篇
污染及防治   16篇
评价与监测   10篇
社会与环境   3篇
灾害及防治   1篇
  2021年   4篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   9篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
  1978年   1篇
  1965年   1篇
  1964年   1篇
  1961年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
41.
The gene for the catalytic domain of thermostable endo-β-1,3-glucanase (laminarinase) LamA was cloned from Thermotoga maritima MSB8 and heterologously expressed in a bioengineered Synechococcus sp. PCC 7002. The mutant strain was cultured in a photobioreactor to assess biomass yield, recombinant laminarinase activity, and CO2 uptake. The maximum enzyme activity was observed at a pH of 8.0 and a temperature of 70°C. At a CO2 concentration of 5%, we obtained a maximum specific growth rate of 0.083 h–1, a biomass productivity of 0.42 g?L–1?d–1, a biomass concentration of 3.697 g?L–1, and a specific enzyme activity of the mutant strain of 4.325 U?mg–1 dry mass. All parameters decreased as CO2 concentration increased from 5% to 10% and further to 15% CO2, except enzyme activity, which increased from 5% to 10% CO2. However, the mutant culture still grew at 15% CO2 concentration, as reflected by the biomass productivity (0.26 g?L–1?d–1), biomass concentration (2.416 g?L–1), and specific enzyme activity (3.247 U?mg–1 dry mass).
  相似文献   
42.
Blooms of chain-forming diatoms commonly flocculate into centimeter-sized aggregates of living, vegetative cells following nutrient depletion in surface waters off southern California. We examined the hypothesis that diatom cells within aggregates experience increased nutrient uptake relative to unattached cells. We measured in situ settling velocities of 49 to 190 m d–1 and calculated porosities of 0.99931 to 0.99984 (±>0.03%) for 12, newly-formed diatom flocs ranging from 0.19 to 4.2 cm3 in volume and 7 to 22 mm in equivalent spherical diameter. Using permeability-porosity relationships, we calculated intra-aggregate flow velocities of 20 to 160 m s–1. Although subject to considerable uncertainty, a Relative Uptake Factor analysis based on mass transfer equqtions suggests that diatoms fixed within aggregates undergoing gravitational settling can take up nutrients up to 2.1±0.4 times faster than unattached diatoms experiencing laminar shear. Increased nutrient uptake by aggregated diatoms may be importan in understanding the reasons for diatom floc formation.  相似文献   
43.
Identification of the chemical P species in biosolids or manures will improve our understanding of the long-term potential for P loss when these materials are land applied. The objectives of this study were to determine the P species in dairy manures, poultry litters, and biosolids using X-ray absorption near-edge structure (XANES) spectroscopy and to determine if chemical fractionation techniques can provide useful information when interpreted based on the results of more definitive P speciation studies. Our XANES fitting results indicated that the predominant forms of P in organic P sources included hydroxylapatite, PO(4) sorbed to Al hydroxides, and phytic acid in lime-stabilized biosolids and manures; hydroxylapatite, PO(4) sorbed on ferrihydrite, and phytic acid in lime- and Fe-treated biosolids; and PO(4) sorbed on ferrihydrite, hydroxylapatite, beta-tricalcium phosphate (beta-TCP), and often PO(4) sorbed to Al hydroxides in Fe-treated and digested biosolids. Strong relationships existed between the proportions of XANES PO(4) sorbed to Al hydroxides and NH(4)Cl- + NH(4)F-extractable P, XANES PO(4) sorbed to ferrihydrite + phytic acid and NaOH-extractable P, and XANES hydroxylapatite + beta-TCP and dithionite-citrate-bicarbonate (DCB)- + H(2)SO(4)-extractable P (r(2) = 0.67 [P = 0.01], 0.78 [P = 0.01], and 0.89 [P = 0.001], respectively). Our XANES fitting results can be used to make predictions about long-term solubility of P when biosolids and manures are land applied. Fractionation techniques indicate that there are differences in the forms of P in these materials but should be interpreted based on P speciation data obtained using more advanced analytical tools.  相似文献   
44.
45.
Novel terpenylnaphthoquinones were found to enhance the rate of oxygen consumption in the presence of NADH/NADH dehydrogenase in 1?:?1?v/v mixtures of 40?mM phosphate buffer (pH 7.4) and DMSO. Initial rates of oxygen consumption increase with an increase in the half-wave reduction potentials of the quinones. The amounts of spin trapped methyl radicals in the presence of DMSO, produced through the Haber–Weiss reaction of the oxygen consumption process, and of the corresponding semiquinones, generated under anaerobic conditions, also correlate with the quinone redox potential. Since this enzymatic system is found in mitochondria, a possible pathway in the cytotoxic activity of these terpenylnaphthoquinones could be the interference or inhibition of mitochondrial respiration by NADH depletion or by mitochondrial degradation due to reactive oxygen species generation.  相似文献   
46.
47.
48.
Forest Fires and Climate Change in the 21ST Century   总被引:3,自引:0,他引:3  
Fire is the major stand-renewing disturbance in the circumboreal forest. Weather and climate are the most important factors influencing fire activity and these factors are changing due to human-caused climate change. This paper discusses and synthesises the current state of fire and climate change research and the potential direction for future studies on fire and climate change. In the future, under a warmer climate, we expect more severe fire weather, more area burned, more ignitions and a longer fire season. Although there will be large spatial and temporal variation in the fire activity response to climate change. This field of research allows us to better understand the interactions and feedbacks between fire, climate, vegetation and humans and to identify vulnerable regions. Lastly, projections of fire activity for this century can be used to explore options for mitigation and adaptation.  相似文献   
49.
The requirements of the Texas State Implementation Plan of the U.S. Clean Air Act for the Houston-Galveston Ozone Nonattainment Area stipulate large reductions in oxides of nitrogen (NO(x)) emissions. A large number of sources at Dow Chemical Co. sites within the nonattainment area may require the addition of continuous emission monitoring systems (CEMS) for online analysis of NO(x), CO, and O2. At the outset of this work, it was not known whether the analyzers could accurately measure NO(x) as low as 2 ppm. Therefore, NO(x) CEMS analyzers from five different companies were evaluated for their ability to reliably measure NO(x) in the 2-20 ppm range. Testing was performed with a laboratory apparatus that accurately simulated different mixtures of flue gas and, on a limited basis, simulated a dual-train sampling system on a gas turbine. The results indicate that this method is a reasonable approach for analyzer testing and reveal important technical performance aspects for accurate NO(x) measurements. Several commercial analyzers, if installed in a CEMS application with sampling conditioning components similar to those used in this study, can meet the U.S. Environmental Protection Agency's measurement data quality requirements for accuracy.  相似文献   
50.
Batch respirometric tests have many advantages over the conventional biochemical oxygen demand (BOD) method for analysis of wastewaters, including the use of nondiluted samples, a more rapid exertion of oxygen demand, and reduced sample preparation time. The headspace biochemical oxygen demand (HBOD) test can be used to obtain oxygen demands in 2 or 3 days that can predict 5-day biochemical oxygen demand (BOD5) results. The main disadvantage of the HBOD and other respirometric tests has been the lack of a simple and direct method to measure oxygen concentrations in the gas phase. The recent commercial production of a new type of fiber optic oxygen probe, however, provides a method to eliminate this disadvantage. This fiber optic probe, referred to here as the HBOD probe, was tested to see if it could be used in HBOD tests. Gas-phase oxygen measurements made with the HBOD probe took only a few seconds and were not significantly different from those made using a gas chromatograph (t test: n = 15, R2 = 0.9995, p < 0.001). In field tests using the HBOD probe procedure, the probe greatly reduced sample analysis time compared with previous HBOD and BOD protocols and produced more precise results than the BOD test for wastewater samples from two treatment plants (University Area Joint Authority [UAJA] Wastewater Treatment Plant in University Park, Pennsylvania, and The Pennsylvania State University [PSU] Wastewater Treatment Plant in University Park). Headspace biochemical oxygen demand measurements on UAJA primary clarifier effluent were 59.9 +/- 2.4% after 2 days (HBOD2) and 73.0 +/- 3.1% after 3 days (HBOD) of BOD, values, indicating that BOD5 values could be predicted by multiplying HBOD2 values by 1.67 +/- 0.07 or HBOD3 by 1.37 +/- 0.06. Similarly, tests using PSU wastewater samples could be used to provide BOD5 estimates by multiplying the HBOD2 by 1.24 +/- 0.04 or by multiplying the HBOD3 by 0.97 +/- 0.03. These results indicate that the HBOD fiber optic probe can be used to obtain reliable oxygen demands in batch respirometric tests such as the HBOD test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号