首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14846篇
  免费   539篇
  国内免费   5815篇
安全科学   918篇
废物处理   945篇
环保管理   1174篇
综合类   8201篇
基础理论   2623篇
环境理论   2篇
污染及防治   5669篇
评价与监测   551篇
社会与环境   498篇
灾害及防治   619篇
  2024年   3篇
  2023年   225篇
  2022年   682篇
  2021年   549篇
  2020年   416篇
  2019年   432篇
  2018年   537篇
  2017年   659篇
  2016年   818篇
  2015年   1012篇
  2014年   1166篇
  2013年   1619篇
  2012年   1270篇
  2011年   1350篇
  2010年   972篇
  2009年   959篇
  2008年   1017篇
  2007年   924篇
  2006年   829篇
  2005年   606篇
  2004年   426篇
  2003年   553篇
  2002年   483篇
  2001年   410篇
  2000年   433篇
  1999年   476篇
  1998年   423篇
  1997年   352篇
  1996年   336篇
  1995年   285篇
  1994年   236篇
  1993年   188篇
  1992年   153篇
  1991年   88篇
  1990年   70篇
  1989年   54篇
  1988年   47篇
  1987年   30篇
  1986年   25篇
  1985年   13篇
  1984年   15篇
  1983年   18篇
  1982年   11篇
  1981年   12篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Certain aromatic amines generated by the decolorization of some azo dyes are not removed substantially by conventional anaerobic–aerobic biotreatment. These aromatic amines are potentially toxic and often released in the wastewater of industrial plants. In this study, the fate and transformation of the naphthylaminesulfonic azo dye Reactive Black 5 (RB5) during different phases of a sequencing batch reactor were investigated. The major products of RB5 decolorization during the anaerobic phase include 2-[(4-aminophenyl)sulfonyl]ethyl hydrogen sulfate (APSEHS) and 1-2-7-triamino-8-hydroxy-3-6-naphthalinedisulfate (TAHNDS). During the aerobic phase, APSEHS was hydrolyzed and produced 4-aminobenzenesulfonic acid, which was further degraded via dearomatization. TAHNDS was transformed rapidly via auto-oxidation into TAHNDSDP-1 and TAHNDSDP-2, which were not further removed by the activated sludge during the entire 30-day aerobic phase. In contrast, different behaviors of TAHNDS were observed during the anoxic phase. The transformation of TAHNDS was initiated either by deamination or desulfonation reaction. TAHNDS was then converted into 3,5-diamino-4-hydroxynaphthalene-2-sulfonic acid, which was subsequently removed via ring cleavage reaction under aerobic condition. In conclusion, complete degradation of TAHNDS by activated sludge occurs only during anoxic/aerobic processes instead of the conventional anaerobic/aerobic processes.  相似文献   
992.
Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l?1 in 1990 to 98 μg 1?1 in 2008, while PO4-P increased from 4 μg l?1 in 1990 to 57 μg l?1 in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.  相似文献   
993.
Azo dyes are recalcitrant and refractory pollutants that constitute a significant menace to the environment. The present study is focused on exploring the capability of Bacillus sp. strain UN2 for application in methyl red (MR) degradation. Effects of physicochemical parameters (pH of medium, temperature, initial concentration of dye, and composition of the medium) were studied in detail. The suitable pH and temperature range for MR degradation by strain UN2 were respectively 7.0–9.0 and 30–40 °C, and the optimal pH value and temperature were respectively 8.0 and 35 °C. Mg2+ and Mn2+ (1 mM) were found to significantly accelerate the MR removal rate, while the enhancement by either Fe3+ or Fe2+ was slight. Under the optimal degradation conditions, strain UN2 exhibited greater than 98 % degradation of the toxic azo dye MR (100 ppm) within 30 min. Analysis of samples from decolorized culture flasks confirmed biodegradation of MR into two prime metabolites: N,N′dimethyl-p-phenyle-nediamine and 2-aminobenzoic acid. A study of the enzymes responsible for the biodegradation of MR, in the control and cells obtained during (10 min) and after (30 min) degradation, showed a significant increase in the activities of azoreductase, laccase, and NADH-DCIP reductase. Furthermore, a phytotoxicity analysis demonstrated that the germination inhibition was almost eliminated for both the plants Triticum aestivum and Sorghum bicolor by MR metabolites at 100 mg/L concentration, yet the germination inhibition of parent dye was significant. Consequently, the high efficiency of MR degradation enables this strain to be a potential candidate for bioremediation of wastewater containing MR.  相似文献   
994.
Agricultural pollution caused by the use of plastic sheetings has been documented to be a widespread problem in most of the major crop-planting regions of the world. In order to better understand the phytotoxic mechanisms induced by phthalic acid esters involved with this problem, Cucumber sativus L. cv Jinyan No. 4 were sown in pots to the three-leaf-stage in the presence of di-n-butyl phthalate (DBP; 0, 30, 50, 100, and 200 mg L?1) for 1, 3, 5, or 7 days. Physiology, biochemistry, and ultrastructure of seedling roots were examined. The results indicated that activities of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) were stimulated at low-DBP treatments and decreased under higher levels (>100 mg L?1) compared to the controls. On the other hand, SOD and POD provided a better defense against DBP-induced oxidative damage in the roots of cucumber seeding, compared to CAT. The productions of both malondialdehyde (MDA) and proline (Pro) were promoted under DBP stress. Visible impact on the cytoderm, mitochondrion, and vacuole was detected, possibly as a consequence of free radical generation. These results suggested that activation of the antioxidant system by DBP led to the formation of reactive oxygen species that resulted in cellular damage.  相似文献   
995.
Occurrence, distribution, spatial and seasonal variations, and partitioning between aqueous phase and suspended particulate matters (SPM) of triclocarban (TCC) and triclosan (TCS) in Xiaoqing River, which receives wastewater treatment plant (WWTP) effluents, were studied. The distribution of the total TCC and TCS levels in surface water and sediments along the river were discussed. The highest TCC and TCS concentrations were both found near the discharge port of WWTPs, and the TCC and TCS levels decreased downstream of the WWTPs as a result of their distances from the source of WWTP discharges. The mean values of TCC and TCS in low-flow season were 1.62 and 1.80 times, respectively, as much as in high-flow season in surface water. The study on partitioning of TCC and TCS between aqueous phase and SPM shown the mean level of dissolved TCC accounted for about 10 % of the total level in surface water, whereas the TCS level was about 30 %. The TCC concentrations detected in the surface sediment samples (0 to 5 cm) ranged from 226 to 1,956 ng/g, with a mean value of 733 ng/g. The TCS levels were between 85 and 705 ng/g, with a mean value of 255 ng/g. The distribution and variations of TCC and TCS in sediments along the river were highly consistent with those in the water phase. The TCC and TCS levels in deep sediments (5 to 10 cm) were significantly lower than those in surface sediments. The mean TCC level in surface sediments was about 2.4 times as much as in deep sediments, and the TCS level in surface sediments was 3.1 times as much as in deep sediments.  相似文献   
996.
Contamination of oxygen-consuming organics (OCOs) was one of the most serious problems in the Yellow River of China. This study was conducted to analyze monitoring of the data on OCOs contamination for the river in 1980 and during 1992–1999 as well as examining the effect of suspended solids (SS) on chemical oxygen demand (CODMn) and biochemical oxygen demand (BOD5) of river water. Several significant results have arisen from the study. First, CODMn and BOD5 of the river water showed an increasing trend from the upper to the lower reaches of the mainstream. BOD5 values of river water in 1992 were significantly higher than those in 1980 and showed an increasing trend during 1992–1999. Second, OCOs in river water of the mainstream was attributed mainly to point sources; the ratio of point to non-point sources of BOD5 was about 2.81. The load from point sources showed an increasing trend during 1992–1998. In contrast, the load from non-point sources manifested a decreasing trend during this period; this was caused by the decreasing trend of SS content in river water. The total load of BOD5 from point and non-point sources displayed an increasing trend during 1992–1998. Third, as the humic substances in SS can hardly be biologically oxidized in natural conditions but can be oxidized by chemical oxidants such as potassium permanganate, CODMn was not suitable for being regarded as a parameter reflecting the pollution degree of OCOs in river water with a high SS content.  相似文献   
997.
PCBs污染土壤的CaO诱导低温热处理脱氯研究   总被引:1,自引:0,他引:1  
研究了低温热处理脱氯技术对废弃电容器封存点附近污染土壤中多氯联苯脱氯的效果,考察反应温度、反应时间及CaO添加比例对PCBs去除率、脱氯率的影响以及反应前后土壤中污染物的组分变化.实验土样中PCBs浓度为107.7 mg/g,属于罕见高浓度PCBs污染土壤.当反应温度为400℃、停留时间4h、CaO添加比例为10%,PCBs的去除率为87.7%,脱氯率为85.3%.土壤样品中五氯联苯和四氯联苯反应后含量降低或未检出,部分反应后样品检出一氯联苯和联苯,说明在CaO诱导PCBs低温热处理脱氯反应中存在逐步脱氯/加氢反应途径.  相似文献   
998.
在超重力场中,研究了硝基苯模拟废水的臭氧/双氧水(O3/H2O2)法处理效果,考察了超重力因子β、H2O2浓度、初始p H、液体流量及处理时间等因素对硝基苯去除率的影响。结果表明,硝基苯去除率随超重力因子β和处理时间的增加而增大,而随H2O2浓度、初始p H和液体流量的增加呈先增大后降低的趋势。当硝基苯初始浓度300 mg/L,工艺条件β=80、p H=10.0、臭氧质量浓度约为40 mg/L、H2O2浓度为4.9 mmol/L、液体流量为120 L/h时,循环处理35 min硝基苯去除率可达96.7%。处理时间60 min后,废水中硝基苯含量1.4 mg/L,COD为39 mg/L,达国家一级排放标准(GB 8978-1996)。在此条件下,硝基苯的降解过程符合准一级反应动力学。  相似文献   
999.
采用氨基硫脲对硅胶进行改性并表征,探讨了改性硅胶(SG-TSC)对水溶液中Pd2+的吸附性能。实验考察了p H值、吸附剂质量、吸附时间以及Pd2+初始浓度等因素对吸附的影响,并探讨了SG-TSC对Pd2+吸附动力学及等温吸附特性。结果表明:在p H为3~6范围内,吸附效果最好。吸附平衡时间为90 min,吸附动力学符合二级速率方程,颗粒内扩散与液膜扩散共同影响着吸附过程。Langmuir等温吸附方程能较好地描述Pd2+在SG-TSC上的吸附特性,298 K时静态饱和吸附容量为0.105 mmol/g。热力学参数计算结果表明,SG-TSC吸附水溶液中的Pd2+是自发、吸热和熵值增加的过程。  相似文献   
1000.
污泥浓缩作为污泥处理的关键环节之一,开发高效的污泥浓缩工艺对于降低污泥含水率、提高脱水设备的运行效率、降低脱水能耗具有十分重要的意义。针对MBR污泥浓度高、污泥粒径小、污泥沉降性能较差等特点,故采用传统的重力浓缩和机械浓缩技术很难有效实现污泥浓缩。因此,尝试采用气浮浓缩技术降低污泥含水率的可行性。从气浮浓缩的中试结果来看,较适宜运行参数为:固体负荷为15 kg/(m2·h),水力负荷为1.5 m3/(m2·h),回流比为1,PAM投配率2‰(w/w干固体),溶气压力为0.4 MPa,气固比为0.03。经过中试设备进行气浮浓缩后,污泥含水率降低至96%左右。此外,还研究了采用气液多相泵系统对剩余污泥的浓缩效率,结果显示,该设备的使用相对于传统溶气气浮工艺,其优点表现在占地小、工程造价低以及运行成本低等方面。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号