首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   1篇
  国内免费   3篇
安全科学   5篇
废物处理   17篇
环保管理   10篇
综合类   33篇
基础理论   39篇
污染及防治   44篇
评价与监测   5篇
社会与环境   7篇
  2022年   2篇
  2021年   2篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   11篇
  2011年   13篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   9篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1966年   1篇
  1965年   2篇
  1964年   2篇
  1963年   1篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
排序方式: 共有160条查询结果,搜索用时 468 毫秒
81.
The seasonal changes in throughfall (TF) and stemflow (SF) chemistry and the canopy interactions of K+ and N compounds were studied in a Japanese cedar forest near the Sea of Japan. The fluxes of most ions, including non-sea-salt SO4(2-), from TF, SF, and rainfall showed distinct seasonal trends, increasing from autumn to winter, owing to the seasonal west wind, while the fluxes of NH4+ and K+ ions from TF+SF might have a large effect of canopy interactions. The contact angle (CA) of water droplets on leaves decreased with leaf aging, suggesting that surface wettability increases with leaf age. The K+ concentration in TF was negatively correlated with the CA of 1-year-old leaves, while the NH4+ concentration was positively correlated with the CA. The net fluxes of NH4+ and NO3(-) from TF were positively correlated with the CA. The increase in wettability may accelerate leaching of K+ or uptake of NH4+.  相似文献   
82.
Min X  Chai L  Zhang C  Takasaki Y  Okura T 《Chemosphere》2008,72(7):1086-1091
Over the last few decades, the use of sulfate-reducing bacteria (SRB) in the treatment of heavy-metal containing wastewaters including acid mine drainage has become a topic of scientific and commercial interest. However, technical difficulties such as the sensitivity of SRB to toxic metals and high effluent COD limit the widespread use of SRB in high heavy-metal containing wastewater. The aim of this study was to clarify the reasons why the immobilized SRB sludge with inner cohesive carbon source (ISIS) process can endure high metal toxicity and decrease effluent COD. The ISIS process can physically set apart SRB and free the system of external influences such as the surrounding toxic metallic ions, as well as form inner carbon sources to avoid high effluent COD. Metal toxicity and bead durability are the two major factors which influence the regeneration and reuse of gel beads. Reuse of suspended SRB sludge and beads crosslinked with boric acid were unsuccessful due to metal toxicity and agglomeration of beads, respectively. However, beads crosslinked with ammonium sulfate prevented agglomeration of beads allowing successful bead regeneration and reuse. The result of four cyclic trials showed that over 99% of zinc was removed in each trial using these beads.  相似文献   
83.
Chemical immobilization technology utilizing poultry waste (PW) along with a native plant (Panicum maximum Jacq.) application was assessed for the attenuation of downward Pb dissolution and modification of Pb speciation in solid and liquid phases in the soil. A large column study with and without plant and PW applications was conducted using a Pb contaminated soil collected from a shooting range area. The PW application reduced water-extractable Pb by about 43% of that of the treatment without the PW and plant applications (Control). The cumulative Pb amount in column leachates over 100d was increased by the PW amendment (0.32mg) compared to Control (0.27mg), but was reduced to 0.23mg by the combined use of plant and PW amendment. Sequential extraction analysis revealed that the Pb fractions of PW-amended soils were shifted to less soluble phases as indicated by an increased residual fraction (20%) and decreased exchangeable and carbonate fractions (22%) than those in the Control soil. Thermodynamic equilibrium calculations demonstrated that predicted Pb(2+) activity was saturated with respect to cerussite in the Control soil and was supersaturated with respect to chloropyromorphite in the PW-amended soils. Our results suggest that the use of plant in combination with PW as a Pb immobilizing amendment attenuated downward Pb leaching and altered Pb species to more geochemically stable phases.  相似文献   
84.
In this study, we investigated the preparation of cationic/anionic chitin nanofiber (CNF) composite materials by electrostatic interaction. An aqueous dispersion of amidinium CNF was prepared by a top-down approach, and a maleylated CNF film was obtained by a bottom-up approach from a chitin ion gel in an ionic liquid with subsequent maleylation on the CNFs. The resulting film was dispersed in ammonia (aq), which was then mixed with the aqueous cationic CNF dispersion to give the composite film. The composition of the two CNFs was evaluated by scanning electron microscopy and X-ray diffraction measurements. Tensile testing results indicated that the mechanical properties of the composites were enhanced with increasing degrees of substitution of the cationic and anionic groups on CNFs, and also when the molar ratio of these groups approached 1:1. The dissociation of the two kinds of CNFs by alkaline treatment of the composite film was achieved, suggesting the presence of an electrostatic interaction among the interactions between them.  相似文献   
85.
Veterinary antimicrobials are emerging environmental contaminants of concern. In this study, the sorption of enrofloxacin (ENR) onto humic acids (HAs) extracted from three Brazilian soils was evaluated. HAs were characterized by elemental analysis and solid 13C nuclear magnetic resonance spectroscopy. The sorption of ENR onto HAs was at least 20-fold higher than onto the soils from which they were separated. Ionic and cation bridging are the primary interactions involved. The interactions driven by cation exchange are predominant on HAs, which appear to have abundant carboxylic groups and a relatively high proportion of H-bond donor moieties with carbohydrate-like structures. Interactions explained by cation bridging and/or surface complexation on HAs are facilitated by moieties containing conjugated ligands, significant content of oxygen-containing functional groups, such as phenolic-OH or lignin-like structures. HAs containing electron-donating phenolic moieties and carboxylic acid ligand groups exhibit a sorption mechanism that is primarily driven by strong metal binding, favoring the formation of ternary complexes between functional groups of the organic matter and drugs.  相似文献   
86.
Airborne particulate matter (APM) is a major air pollutant, and the effect on human health of fine APM (PM2.5) deposited deep inside the lungs has recently become a serious concern. Moreover, soluble constituents may leach from APM, and intensify some health disorders. To identify the soluble chemical constituents of APM, size-classified APM was sampled in central Tokyo, and the elemental compositions of the water-soluble, acid-soluble and insoluble fractions were investigated. The extraction procedure was validated by calculating the mass balance of soluble and insoluble fractions of a standard APM reference material (NIST SRM 1648). Among the major elements, Fe and Ti in APM of all size classes and K in coarse APM were distributed primarily in the insoluble fraction and were inferred to be present as oxides or silicates, whereas Na and Mg in all size classes and K in fine APM were primarily in the water-soluble fraction and were inferred to be have originated mainly from sea salt. Among the trace elements, Zn and Cd in the fine APM (d < 2 microm) had large enrichment factors, indicating an anthropogenic origin, and were distributed primarily in the water-soluble fraction. When fine anthropogenic APM enters into the lungs, leached toxic elements, such as Cd, may adversely affect health. The higher the bonding energy of the monoxide molecule of the element was, the higher its distribution ratio was in the water-soluble fraction. Therefore, many metallic elements in APM were inferred to be present as oxygen-bonded compounds.  相似文献   
87.
A new Triassic archosaurian from China shows a number of aquatic specializations, of which the most striking is the extreme lateral compression of the long tail. Others that may also reflect aquatic adaptations include platelike scapula and coracoid, elongate neck with extremely long and slender ribs, and reduction of osteoderms. In contrast, its pelvic girdle and hind limb have no aquatic modifications. Anatomic features, taphonomy, and local geological data suggest that it may have lived in a coastal–island environment. This lifestyle, convergent with some Jurassic marine crocodyliforms that lived at least 40 million years later and the saltwater species of extant Crocodylus, contradicts with the prevailing view that Triassic archosaurians were restricted to nonmarine ecosystems. Its mosaic anatomy represents a previously unknown ecomorph within primitive archosaurians.Electronic Supplementary Material  Supplementary material is available for this article at  相似文献   
88.
89.
Parasites are ubiquitous in natural systems and ecosystem-level effects should be proportional to the amount of biomass or energy flow altered by the parasites. Here we quantified the extent to which a manipulative parasite altered the flow of energy through a forest-stream ecosystem. In a Japanese headwater stream, camel crickets and grasshoppers (Orthoptera) were 20 times more likely to enter a stream if infected by a nematomorph parasite (Gordionus spp.), corroborating evidence that nematomorphs manipulate their hosts to seek water where the parasites emerge as free-living adults. Endangered Japanese trout (Salvelinus leucomaenis japonicus) readily ate these infected orthopterans, which due to their abundance, accounted for 60% of the annual energy intake of the trout population. Trout grew fastest in the fall, when nematomorphs were driving energy-rich orthopterans into the stream. When infected orthopterans were available, trout did not eat benthic invertebrates in proportion to their abundance, leading to the potential for cascading, indirect effects through the forest-stream ecosystem. These results provide the first quantitative evidence that a manipulative parasite can dramatically alter the flow of energy through and across ecosystems.  相似文献   
90.
The pulsed high-voltage discharge is a new advanced oxidation technology for water treatment. Methyl Orange (MO) dye wastewater was chosen as the target object. Some investigations were conducted on MO decoloration including the discharge characteristics of the multi-needle reactor, parameter optimization, and the degradation mechanism. The following results were obtained. The color group of the azo dye MO was effectively decomposed by water surface plasma. The decoloration rate was promoted with the increase of treatment time, peak voltage, and pulse frequency. When the initial conductivity was 1700 μS/cm, the decoloration rate was the highest. The optimum distance between the needle electrodes and the water surface was 1 mm, the distance between the grounding electrode and the water surface was 28 mm, and the number of needle electrodes and spacing between needles were 24 and 7.5 mm, respectively. The decoloration rate of MO was affected by the gas in the reactor and varied in the order oxygen > air> argon > nitrogen, and the energy yield obtained in this investigation was 0.45 g/kWh.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号