首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   0篇
  国内免费   5篇
废物处理   8篇
环保管理   14篇
综合类   8篇
基础理论   19篇
污染及防治   42篇
评价与监测   10篇
社会与环境   4篇
  2023年   5篇
  2022年   11篇
  2021年   22篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   13篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  1992年   1篇
  1991年   1篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
91.
Abstract: A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream‐to‐aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30‐year model‐simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground‐water insurance to sustain California during extended dry periods.  相似文献   
92.
Degradation rates of light and heavy oil in permeable carbonate sands from the Gulf of Aqaba were investigated to evaluate the ability of sediments to degrade oil compounds. Silicate sands that are less permeable and different properties from carbonate sands were used for comparison. Estimates of oil degradation rates were based on oxygen consumption rates, calculated by incubating natural carbonate sands with oil. The degradation rates of light oil were twofold higher than those of heavy oil, which may be attributed to the presence of a higher carbon number in heavy oil compared with light oil. Degradation rates of light oil in carbonate sands were twofold higher than in silicate sands. Oil degradation rates calculated using the bottle incubation technique were three- to fourfold higher than rates from chamber incubations, indicating the importance of adequate mixing between oil particles and sediments during degradation processes. This study suggests that permeable sands, through their chemical and physical properties, increase oil biodegradation rates by enhancing flow through sediment particles and positively impacting bioturbation processes.  相似文献   
93.
Dissolution of raw phosphate (apatite) in sea water of the Gulf of Aqaba was investigated through lab incubation experiments. Three types from three different sources (Al-Hasa, Al-Abyad and Esh-Shydiya) have been used for these experiments. Impact of quantity, grain size, and source (type) of raw phosphate on dissolution rate were studied. Statistical analysis shows significant differences between the results obtained from comparing each two weights; as weight of apatite increased, dissolved inorganic phosphate-phosphorus (DIP) and fluoride in sea water solution increased. The differences between the dissolution rates of raw phosphate from the three sites were not significant while the differences between the different grain size fractions were significant. Dissolution rates were inversely related to particle size. Using a worst-case scenario, a conservative estimate of the maximum increase in DIP in seawater of the Gulf of Aqaba due to the apatite particles lost to the sea during ship loading resulted in DIP concentrations of 0.03 μM per year. As the residence time of the water in the Gulf of Aqaba is about one year, the DIP concentration will not increase by more than 0.03 μM under the estimated annual quantity of exported phosphate. Fluoride will not increase by more than 0.03 mg/l under the same conditions.  相似文献   
94.
Management of solid organic waste has become a major challenge in developing countries. Raw solid organic waste can be converted into biogas through anaerobic digestion; however, the efficiency of the process is influenced by various factors including the composition of the substrate. The present study was designed with the objective of enhancing the biodegradability of the organic fraction of municipal solid waste (OFMSW) and biogas production through co-digestion of the substrate with melon residues. The study was conducted in batch mode in four phases. The results revealed that an addition of melon waste at the rate of 300?g?kg?1 OFMSW substantially increased the biodegradation rate and biogas production compared to OFMSW alone. The removal of up to 57.2?% volatile solids and a carbon to nitrogen (C/N) ratio of 15.9 was achieved at a 60?% water level when the digestion mixture was treated with inocula collected from partially-degraded food waste. The findings of this study reveal that melon residues could be used as a potential co-substrate to enhance the biodegradability of OFMSW and biogas production.  相似文献   
95.
Soils that receive large applications of animal wastes and sewage sludge are vulnerable to releasing environmentally significant concentrations of dissolved P available to subsurface flow owing to the gradual saturation of the soil's P sorption capacity. This study evaluated P sorption (calculated from Langmuir isotherms) and availability of P (as CaCl2-P and resin P) in soils incubated for 20 d with poultry litter, poultry manure, cattle slurry, municipal sewage sludge, or KH2PO4, added on a P-equivalent basis (100 mg P kg(-1)). All the P sources had a marked negative effect on P sorption and a positive effect on P availability in all soils. In the cattle slurry- and KH2PO4-treated soils, the decreases in P sorption maximum (19-66%) and binding energy (25-89%) were consistently larger than the corresponding decreases (7-41% and 11-30%) in poultry litter-, poultry manure-, and sewage sludge-treated soils. The effects of cattle slurry and KH2PO4 on P availability were, in most cases, larger than those of the other P sources. In the poultry litter, poultry manure, and sewage sludge treatments, the increase in soil solution P was inversely related (R2 = 0.75) to the input of Ca from these relatively high Ca (13.5-42 g kg(-1)) sources. Correlation analyses implied that the magnitude of the changes in P sorption and availability was not related to the water-extractable P content of the P sources. Future research on the sustainable application of organic wastes to agricultural soils needs to consider the non-P- as well as P-containing components of the waste.  相似文献   
96.
Environmental Science and Pollution Research - Soil pollution due to potentially toxic elements is a worldwide challenge for health and food security. Chelate-assisted phytoextraction along with...  相似文献   
97.
Environmental Science and Pollution Research - This paper examines the relationship between deagriculturalization, economic growth, and CO2 emissions in Pakistan from the period 1975 to 2018 by...  相似文献   
98.

The significance of global green logistics in improving green economic activities is a critically considered and debatable research topic in the context of economic growth and environment. This study aims to analyze the growth and environmental effects of green logistics performance for One Belt and Road Initiative (OBRI) countries over the period 2007–2019. The study used panel data two-stage least squares (2SLS) and generalized method of moments (GMM) estimators with robust inferences. The findings have revealed that green logistics performance improves the economic growth in OBRI, Europe, and MENA economies. While green logistics performance enhances the environmental pollution in OBRI, Central Asia, and MENA economies, it significantly improves the environmental quality in Europe and East and Southeast Asia regions. The control variables have also importance in economic growth and environment in policy implication in OBRI and five sub-regions of OBRI economies. Based on these findings, we can conduct some robust green logistics policies in OBRI.

  相似文献   
99.
Environmental Science and Pollution Research - Since the nonlinear ARDL approach is introduced in advanced econometric, some old relationships are getting new empirical attention. Therefore, we...  相似文献   
100.
Chloroform, a probable human carcinogen, is mainly produced anthropogenically for industrial use and may be released to the environment from a large number of sources related to its manufacture and use, including pulp and paper mills, hazardous waste sites, and sanitary landfills. Remediation of chloroform through conventional technologies has been met with limited success due to the conditions required and the formation of hazardous substances such as dichloromethane. The objective of this study was to investigate chloroform reduction in multicontaminated fine-textured soil using zero-valent iron (Fe0) in anaerobic microcosms. Four amended matrices were tested: simple matrix control (glass beads), soil matrix control (glass beads + soil), Fe0 in a simple matrix (glass beads + Fe0), and Fe0 in a soil matrix (soil + Fe0). Headspace chloroform and its transformation products dichloromethane, chloromethane, and methane were measured over 230 days and during short intervals in the initial 3 days. Chloroform (~0.3 mM initial mass) persisted in both control microcosms but was completely transformed in microcosms containing soil + Fe0 by 12 h and glass beads + Fe0 by 48 h. Reductive dechlorination of chloroform occurred with simultaneous production of dichloromethane (~0.11 to 0.14 mM mass) and chloromethane (~0.02 to 0.13 mM mass). Little methane (~0.07 to 0.26 μM mass) production as an end product of chloroform reduction was observed in microcosms amended with Fe0. Produced dichloromethane and chloroform almost disappeared by 230 days. The results showed a complete chloroform transformation pathway that has good potential for the remediation of chlorinated compounds in fine-textured soil. The role of soil clay minerals in redox reactions can be further investigated to improve the reductive dechlorination of chlorinated compounds in contaminated environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号