首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   8篇
  国内免费   1篇
安全科学   25篇
废物处理   9篇
环保管理   77篇
综合类   33篇
基础理论   79篇
污染及防治   86篇
评价与监测   16篇
社会与环境   10篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   9篇
  2015年   6篇
  2014年   6篇
  2013年   44篇
  2012年   18篇
  2011年   13篇
  2010年   11篇
  2009年   10篇
  2008年   13篇
  2007年   12篇
  2006年   20篇
  2005年   12篇
  2004年   10篇
  2003年   17篇
  2002年   13篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有335条查询结果,搜索用时 46 毫秒
91.
92.
A phenosafranine-containing Nafion film attached to the distal end of a fiber-optic probe forms a functional redox-sensitive optical sensor. The synthetic cationic photoactive dye phenosafranine, 3,7-diamino-5-phenylphenazinium chloride, responds with changes in light absorbance between its oxidized and reduced forms. This optical property persists when phenosafranine is sorbed into Nafion, a perfluorosulfonate anionic film. Optical properties of the sensor are similar to those seen by others in solution. At high redox conditions, such as an open nitrogen-purged aqueous pH 6.5 solution, optical absorbance of phenosafranine is high, while at low redox conditions, such as an aqueous pH 6.5 iron(II) solution, optical absorbance of phenosafranine is low. Titration of a closed pH 6.5 aqueous solution with a standard iron(II) solution lowers redox potential in a predictable manner and can be followed by the optical redox sensor in parallel with a commercial redox potential electrode.  相似文献   
93.
Today’s heavy-duty natural gas–fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas–fueled vehicles has been identified as a concern. Since today’s heavy-duty natural gas–fueled fleet penetration is low, today’s total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas–fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These “pump-to-wheels”(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions.

Implications: Newly collected pump-to-wheels methane emissions data for current natural gas technologies were combined with future market growth scenarios, estimated technology advancements, and best practices to examine the climate benefit of future fuel switching. The analysis indicates the necessary targets of efficiency, methane emissions, market penetration, and best practices necessary to enable a pathway for natural gas to reduce the carbon intensity of the heavy-duty transportation sector.  相似文献   

94.
Changing unsustainable natural resource use in agricultural landscapes is a complex social–ecological challenge that cannot be addressed through traditional reductionist science. More holistic and inclusive (or transdisciplinary) processes are needed. This paper describes a transdisciplinary project for natural resource management planning in two regions (Eyre Peninsula and South Australian Murray-Darling Basin) of southern Australia. With regional staff, we reviewed previous planning to gain an understanding of the processes used and to identify possible improvement in plan development and its operation. We then used an envisioning process to develop a value-rich narrative of regional aspirations to assist stakeholder engagement and inform the development of a land use management option assessment tool called the landscape futures analysis tool (LFAT). Finally, we undertook an assessment of the effectiveness of the process through semi-structured stakeholder interviews. The planning process review highlighted the opinion that the regional plans were not well informed by available science, that they lacked flexibility, and were only intermittently used after publication. The envisioning process identified shared values—generally described as a trust, language that is easily understood, wise use of resources, collaboration and inclusiveness. LFAT was designed to bring the best available science together in a form that would have use in planning, during community consultation and in assessing regional management operations. The LFAT provided spatially detailed but simple models of agricultural yields and incomes, plant biodiversity, weed distribution, and carbon sequestration associated with future combinations of climate, commodity and carbon prices, and costs of production. Stakeholders were impressed by the presentation and demonstration results of the software. While there was anecdotal evidence that the project provided learning opportunities and increased understanding of potential land use change associated with management options under global change, the direct evidence of influence in the updated regional plan was limited. This project had elements required for success in transdisciplinary research, but penetration seems limited. Contributing factors appear to be a complexity of climate effects with economic uncertainty, lack of having the project embedded in the plan revision process, limited continuity and capacity of end users and limited after project support and promotion. Strategies are required to minimise the controlling influence that these limitations can have.  相似文献   
95.
96.
Organic and elemental carbon and a number of carboxylic acids and n-alkanes were measured in aerosol samples collected at three sites in the Ohio River Valley between October 1980 and August 1981. Approximately 100 filters were analyzed for organic and elemental carbon for each site. For the 11-month period organic and elemental carbon comprised about 19 percent of the total aerosol mass with about two-thirds of the carbon as organic. Regression analysis showed that the principal source of organic carbon was combustion. The measurements of the specific organic compounds indicated a weak biogenic component to the organic aerosol.  相似文献   
97.
Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted approximately 20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted approximately 35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idle CO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased by approximately 100% and 70%, respectively. Six Detroit Diesel Corp. (DDC) Series 60 engines in engine test cell were found to emit less CO, NOx, and PM emissions and consumed fuel at only 75% of the level found in the chassis dynamometer data. This is because fan and compressor loads were absent in the engine test cell.  相似文献   
98.
99.
Soil biotic and abiotic factors strongly influence nitrogen (N) availability and increases in nitrification rates associated with the application of manure. In this study, we examine the effects of edaphic properties and a dairy (Bos taurus) slurry amendment on N availability, nitrification rates and nitrifier communities. Soils of variable texture and clay mineralogy were collected from six USDA-ARS research sites and incubated for 28 d with and without dairy slurry applied at a rate of ~300 kg N ha(-1). Periodically, subsamples were removed for analyses of 2 M KCl extractable N and nitrification potential, as well as gene copy numbers of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Spearman coefficients for nitrification potentials and AOB copy number were positively correlated with total soil C, total soil N, cation exchange capacity, and clay mineralogy in treatments with and without slurry application. Our data show that the quantity and type of clay minerals present in a soil affect nitrifier populations, nitrification rates, and the release of inorganic N. Nitrogen mineralization, nitrification potentials, and edaphic properties were positively correlated with AOB gene copy numbers. On average, AOA gene copy numbers were an order of magnitude lower than those of AOB across the six soils and did not increase with slurry application. Our research suggests that the two nitrifier communities overlap but have different optimum environmental conditions for growth and activity that are partly determined by the interaction of manure-derived ammonium with soil properties.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号