首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   6篇
  国内免费   38篇
综合类   51篇
基础理论   2篇
污染及防治   12篇
  2020年   2篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2012年   4篇
  2011年   2篇
  2010年   10篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1999年   3篇
  1996年   1篇
排序方式: 共有65条查询结果,搜索用时 46 毫秒
51.
王磊  金剑  李晓东  池涌  严建华 《环境科学》2010,31(8):1973-1980
研究了碱性水热法同步稳定城市垃圾/医疗废物焚烧飞灰与废水中重金属的稳定化效果和稳定化机制.结果表明,在碱性水热条件下,城市垃圾/医疗废物焚烧飞灰均对废水中重金属具有很强的去除作用,并且经反应后,飞灰重金属渗滤毒性不仅没有上升反而大大降低.原始医疗废物焚烧炉飞灰中6种重金属渗滤毒性为:Mn 17 300μg/L,Ni 1 650μg/L,Cu 2 560μg/L,Zn 189 000μg/L,Cd 1 970μg/L,Pb 1 560μg/L;原始城市垃圾焚烧飞灰中6种重金属渗滤毒性为:Mn 17.2μg/L,Ni8.32μg/L,Cu 235.2μg/L,Zn 668.3μg/L,Cd 2.81μg/L,Pb 7 200μg/L.这2种飞灰分别与重金属废水(浓度Cu、Pb为50mg/L,Mn、Zn、Ni、Cd为25 mg/L)在275℃条件下,碳酸钠添加量为1/10(5 g碳酸钠/50 g干灰),液固比为10/1,经10 h反应后,医疗垃圾焚烧炉飞灰对重金属去除率达86.2%~97.3%,城市垃圾焚烧飞灰对重金属去除率达94.7%~99.6%.反应后飞灰经重金属渗滤毒性测试均远远低于国家标准值.重金属稳定化机制主要是由于在硅铝酸盐晶体形成过程中对重金属化学吸附,物理包裹作用,老化期重金属空间几何位置迁移,高pH值对稳定化起到一定辅助作用.  相似文献   
52.
彭政  丁琼  姜晨  高新华  严建华 《环境科学》2010,31(8):1966-1972
比较了医疗废物焚烧飞灰在温度200~450℃,流动氮气和静态空气气氛中二(噁)英气固相行为变化.在流动氮气条件下,固相二(噁)英随温度升高逐渐增加,350下飞灰二(噁)英浓度升至最高,毒性当量浓度和总浓度分别增加了46.0%和26.0%,随后随着温度升高,二(噁)英含量逐渐降低,450℃条件下浓度减少至最低,分别减少了86.8%和80.5%.在静态空气下,固相二(噁)英随温度至250℃条件下,飞灰二(噁)英浓度升至最高,毒性当量浓度和总浓度分别增加了20.7%和28.7%,随着温度进一步升高,二(噁)英含量逐渐降低,450℃条件下浓度减至最低,分别减少了99.5%和99.5%.气相只有少量二(噁)英产生,仅占总产生量的0.11%~2.16%.本实验研究飞灰的最佳热处置条件为:静态空气条件下,450℃处置1 h.本研究中,分解反应在PCDDs与PCDFs的降解过程起到主要作用,而脱氯与脱附仅为次要作用.  相似文献   
53.
多氯联苯污染土壤热脱附预处理过程干化及排放特性研究   总被引:1,自引:0,他引:1  
利用桨叶式干化实验装置对多氯联苯(PCBs)污染土壤热脱附预处理过程的干化特性进行了研究,结果表明干化温度和搅拌速率的提高均有助于加速干化速率;水分的内部扩散是PCBs污染土壤干化速率的主要影响因素.文章还结合高分辨色谱/质谱联用仪研究了PCBs污染土壤预处理过程中多氯联苯的排放特性,结果显示干化温度升高会促进4氯代到7氯代联苯的释放,并且会增加气相PCBs毒性当量(TEQ) 以及PCBs总量排放百分率.考虑安全和干化效果,干化温度选择在200 ℃以下为宜.  相似文献   
54.
采用聚氯乙烯(PVC)为氯源与废弃物典型组分等量混合后在500 ℃氮气气氛条件下制成焦炭样品,通过热重(TGA/DTG)、扫描电子显微镜(SEM)、能谱(EDS)和拉曼光谱分析手段,对样品进行了焦炭碳结构和反应活性分析.结果表明,有机氯会抑制废弃物衍生焦炭的活性,使淀粉热解焦炭最大反应速率从0.15 min-1下降至0.13 min-1.动力学方面,淀粉(60.575 kJ·mol-1)和纤维素焦炭(101.686 kJ·mol-1)样品的表观活化能均小于其与PVC混合物的热解焦炭;而PVC的添加则会使淀粉和纤维素热解焦炭中的C结构更趋于无序化.微观角度方面,添加PVC后的焦炭表面同样呈现出纤维丝状结构,但气壁更加粗糙,表面有较多的褶皱,破坏了由废弃物内在碱金属催化形成的孔隙结构,使得焦炭表面结构破碎化程度更高.  相似文献   
55.
滑动弧放电等离子体裂解正己烷实验研究   总被引:4,自引:0,他引:4  
考察了一种新型低温等离子体发生方式滑动弧放电对正己烷的裂解效果,检测了主要裂解产物,并分析了供给电压、正己烷初始浓度、电极材料和反应器结构对裂解率的影响.结果表明,该法可以有效处理正己烷,最高裂解率达96%.在空气中的主要裂解产物为CO2、CO、NO2和H2O.增大供给电压可以提高正己烷裂解率;初始浓度增大后裂解率下降,但绝对处理量增大;相同能耗情况下,采用铁电极时能量利用率最低,正己烷裂解率低于铝电极和铜电极;电极最小间距和喷嘴直径之间的比例关系影响裂解效果,优化两者的匹配关系可以提高裂解率.  相似文献   
56.
初始pH值、液固比对某焚烧炉灰重金属渗滤的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
对某煤和垃圾混烧流化床焚烧炉的一种灰样品进行了TCLP试验 ,研究了初始渗滤液pH值变化以及液固比变化对该灰中重金属渗滤特性的影响 .在初始渗滤液pH =6之前 ,渗滤后溶液的pH值升高迅速 ,pH =6之后 ,趋势缓慢 .试验结果表明灰中重金属极易在酸性环境中渗滤 .随着初始渗滤液液固比的增大 ,渗滤后溶液的pH值下降 ,渗滤液中的重金属浓度上升 ,灰中的重金属随液固比的增大不断滤出直至饱和状态 .  相似文献   
57.
中国部分城市生活垃圾热值的分析   总被引:34,自引:0,他引:34       下载免费PDF全文
在收集和整理大量中国城市生活垃圾数据的基础上,进行工业分析和元素分析,提出了较适合中国城市生活垃圾热值的估算公式,并对中国垃圾的成分与热值的关系作了分析探讨,为各城市寻找适宜的垃圾处理方法特别是垃圾焚烧法提供了参考.  相似文献   
58.
化学化工等行业产生大量含无机盐的高浓度难降解有机废水,介绍了氯离子浓度和有机物浓度都大大超过测定范围的有机废水COD的测定方法。该方法当氯离子的浓度在20000~60000mg/L时,相对误差在0.15%~5.8%之间;并有较高的精密度,6次平行测定的结果相对标准差<2%;加标回收率为99%~101%;与标准方法相比不存在显著性差异。  相似文献   
59.
为研究医疗废物焚烧炉对周边土壤中重金属含量的影响,对某典型焚烧厂周围土壤进行了运行前和运行5年(2007—2012年)后重金属含量的采样分析研究.共采集20个土壤样品、2个飞灰样品,并对其中砷(As)、镉(Cd)、铜(Cu)、汞(Hg)、镍(Ni)、铅(Pb)、锑(Sb)、钒(V)、锌(Zn)共10种重金属的含量进行了测定.结果显示,除Pb外,其余金属元素含量都有不同程度的升高.主成分分析表明,医疗废物焚烧厂并不是该区域土壤中重金属的唯一污染来源,还存在其它潜在污染源.健康风险评估结果显示,砷(As)在非致癌及致癌风险评估中都明显超标,必须严格控制砷排放,降低砷在环境中的含量.  相似文献   
60.
以3个PCBs污染物封存点周边土壤为对象,详尽研究了典型电力电容器污染土壤中209种PCBs同系物含量水平、分布特性及毒性当量,了解污染土壤中PCBs的污染水平和环境风险,为PCBs污染土壤的场地修复提供支撑.对来自于3个污染场地的12个污染土样分析表明,Soil A总PCBs含量为1 705.0μg·g-1±424.3μg·g-1(n=4),高于Soil B(233.0μg·g-1±80.0μg·g-1,n=4)和Soil C(225.7μg·g-1±90.2μg·g-1,n=4),显示3种土壤均受到PCBs严重污染.不同氯代数的PCBs分子中,三氯联苯及四氯联苯含量最高.Soil A、Soil B及Soil C中PCBs的氯元素质量分数分别为43.7%±1.0%、45.5%±0.5%和44.9%±0.3%,这一比例接近Aroclor1242以及国产1号PCB绝缘油.指示性PCBs与总PCBs含量之间存在明显相关关系,线性拟合方程R2=0.998.应用指示性PCBs可有效估算总PCBs含量,简化样品分析过程.类二英多氯联苯以PCB77、PCB105及PCB118为主,三者之和占dl-PCBs的89.5%±4.0%.污染土样的毒性当量(以WHO-TEQ计)介于3.56~63.55 ng·g-1之间,显示该区域具有较高的环境风险.PCB28/31、PCB33/20、PCB66/80、PCB70、PCB32及PCB18等是含量最高的PCB单体.与国内外其他研究相比,该封存点土壤受到了高浓度PCBs污染,具有较高的环境风险.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号