首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   45篇
  国内免费   64篇
安全科学   41篇
废物处理   4篇
环保管理   6篇
综合类   184篇
基础理论   35篇
污染及防治   21篇
评价与监测   6篇
社会与环境   1篇
  2023年   8篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   15篇
  2011年   24篇
  2010年   26篇
  2009年   18篇
  2008年   21篇
  2007年   31篇
  2006年   25篇
  2005年   33篇
  2004年   22篇
  2003年   12篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1992年   1篇
  1991年   6篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1974年   1篇
排序方式: 共有298条查询结果,搜索用时 15 毫秒
51.
水体营养水平对3种沉水植物生长及抗氧化酶活性的影响   总被引:6,自引:0,他引:6  
模拟研究了沉水植物狐尾藻Myriophyllum spicatum L、轮叶黑藻Hydrilla verticillata L和金鱼藻Ceratophyllum demersum L在中、富两种营养水平下的生长及生理特性.研究结果表明,在45 d的培养过程中,狐尾藻、轮叶黑藻和金鱼藻在中营养(TN1.86 mg·L-1;TP0.087 mg·L-1)和富营养(TN2.47 mg·L-1;TP0.16 mg·L-1)水平下的单株最大生物量分别是0.92、0.27、1.11、0.56、0.41和0.87 g,狐尾藻和金鱼藻在中营养水平下单株最大生物量分别较富营养水平下高出39%和22%,而黑藻在中营养水平下单株最大生物量较富营养水平下低了51%,表明狐尾藻和金鱼藻在中营养水平下的生长较黑藻好.通过对3种沉水植物可溶性蛋白和叶绿素质量分数的分析发现,黑藻在中富两种营养水平下,质量分数较低且波动平稳,金鱼藻和狐尾藻可溶性蛋白和叶绿素质量分数持续升高,表明这两种沉水植物对水体中营养盐的耐受能力较黑藻强.金鱼藻超氧歧化酶(SOD)活性、过氧化物酶(peroxidase)活性和丙二醛(MDA)含量在试验后期上升速度加快,且富营养水平下金鱼藻MDA质量分数的最大值是中营养水平下最大值的5倍,表明在中营养水平下金鱼藻已经受到明显胁迫,而在富营养水平下受到胁迫更为显著.在本试验条件下,黑藻生物量小,而金鱼藻SOD活性、POD活性和MDA质量分数变化幅度大,在试验后期急速上升,表明这两种沉水植物受到的营养盐胁迫较狐尾藻大,而狐尾藻在中营养水平下的耐营养盐胁迫能力较强.  相似文献   
52.
研究了3种表面活性剂及其不同浓度配比对五种柴油链烃的增溶及对柴油污染土壤的洗脱作用.结果表明,复合表面活性剂的增溶效果优于单一表面活性剂,其中尤以阴离子表面活性剂SDS与非离子表面活性剂Tw-80的配比效果最佳;随阴离子表面活性剂复合比例的提高,可以有效地降低复合表面活性剂混合胶束的临界胶束浓度,提高单位表面活性剂接纳目标污染物的能力,增大目标链烃分配进入胶束相的倾向,同时有效降低增溶平衡时对表面活性剂用量的要求;高浓度的阴离子表面活性剂具有很高的污染洗脱效率,非离子表面活性剂Tw-80则易被土壤吸附而导致洗脱效率低下,但阴离子表面活性剂SDS与Tw-80配比能够有效地改善Tw-80易被土壤吸附的现象,并随复合比例提高而不同程度的增强污染土壤中柴油的洗脱效果.  相似文献   
53.
采集了太湖梅梁湾的柱状沉积物,分析和研究了沉积物中磷的形态、吸附动力学以及潜在的可交换性磷随深度的变化.结果表明,样品中各形态的磷含量随着深度增加总趋势为减小.不同深度的沉积物对磷的吸附过程具有相同的变化趋势,在前3h内,沉积物对磷的吸附速度较大;12h后,基本达到平衡.磷最大吸附量随深度的增加呈上升趋势,到达18cm后趋于平缓.样品中的潜在可交换性磷(qi)的含量为2.48~17.40mmol/kg,其分配系数(Kp)为1.81~51.44m3/kg,随深度的增加,qi和Kp均呈先增加后减小的趋势.根据疏浚后新形成的表层沉积物磷的净释放量(即表征磷释放的潜在可交换性磷与表征吸附的最大吸附量之差)的变化趋势,推算出该区域环境保护疏浚的最小深度为25cm.  相似文献   
54.
滇池福保湾沉积物不同形态磷的垂向分布   总被引:9,自引:1,他引:8  
应用SMT连续提取法分析滇池福保湾柱状沉积物的磷(P)形态,探讨P形态的垂向分布特征.沉积物中总磷 (TP)含量高,最高达4 200 mg/kg, 无机磷 (IP)是TP的主要部分,占TP的52%~91%, 铁/铝结合态磷 (Fe/Al-P)是IP的主要部分,占IP的55%~94%.同一湖区不同采样点的沉积物P形态的垂向变化不同,湖湾北端近河口处和南端远离河口处的沉积物中Fe/Al-P, IP, 有机磷 (OP)和TP含量随深度增加而增加,6~11 cm 层的含量最高,这与近年来入湖河流污染负荷削减和河堤阻隔导致P入湖量减少有关.河口处沉积物的钙结合态磷 (Ca-P)含量随深度增加而增加,最南端沉积物的Ca-P含量随深度增加而减少.离河口较远的沉积物中,Fe/Al-P, IP, OP,TP和Ca-P均随深度增加而减少.各点沉积物P形态的变化受该点人类活动带来的入湖污染物量的影响较大,距河口最远处的沉积物中P形态随深度变化不如其他点明显.   相似文献   
55.
入湖污染河流对受纳湖湾水质的影响   总被引:17,自引:2,他引:15       下载免费PDF全文
为研究滇池重污染湖湾——福保湾的污染现状及入湖污染河流对湖湾水质的影响,并为福保湾污染底泥固化技术示范工程提供基础数据,在福保湾布设15个采样点,采集并分析表层水中营养元素氮、磷的含量. 结果表明,福保湾氮、磷等营养元素含量的空间分布规律明显,入湖河流污染负荷对湖湾水质有较大影响. 河口附近水域水质较差,ρ(TP)高达0.7 mg/L,以不溶的颗粒态磷为主;ρ(TN)为7 mg/L左右,其中的50%以上以NH3-N的形态存在. 随与河口间距离的增加,上覆水中ρ(TN)和ρ(TP)逐渐降低. 在距河口300 m的水域范围内,ρ(TN)和ρ(TP)的空间分布规律与A.B.卡拉乌舍夫扩散模型计算结果相符.   相似文献   
56.
光照与磷的交互作用对两种淡水藻类生长的影响   总被引:14,自引:1,他引:13       下载免费PDF全文
采用一次性单种培养的方法,研究了磷和光照对铜绿微囊藻和四尾栅藻生长以及叶绿素形成的影响.结果表明,光照水平的提高能够提高藻类最大比增长率,延长藻类指数生长期;但达到一定水平后,光照水平的增加会抑制单细胞藻类体内叶绿素的合成.在试验设定的浓度范围内,磷对藻类最大比增长率的影响不大;而不利于藻类叶绿素的形成.对于铜绿微囊藻的生长,磷与光照表现出明显的交互作用,但对于四尾栅藻,二者的交互作用并不明显.  相似文献   
57.
不同氮源和曝气方式对淡水藻类生长的影响   总被引:13,自引:3,他引:10  
利用水族箱微宇宙研究了2种氮源水体中不同曝气条件对藻类生长的影响.试验使用铵态氮(NH4+-N)和硝态氮(NO3--N)作为氮源,每种氮源水体分别设置不曝气、连续曝气、昼间曝气和夜间曝气4个处理.结果显示:试验初期以NH4+-N为主要氮源的水体中藻类生长明显好于以NO3--N为主要氮源的水体.试验后期则以NO3--N为主要氮源的藻类生长情况更好.连续曝气对于2种氮源水体中藻类生长有着不同的影响;昼间曝气对2种氮源的藻类生长影响不大;而夜间曝气对藻类生长有明显的抑制作用.NH4+-N含量较高的水体中蓝藻容易成为优势种,而NO3--N含量高的水体中则以绿藻为主.不同曝气条件下藻类优势种没有明显差别.  相似文献   
58.
在绍兴县高温染整有限公司建立的化纤涤纶染色废水闭路循环闭路技术实施示范点,采用废水闭路循环,辅之废碱液回用综合防治工艺,经两年多的运行实践结果表明,不仅实现了涤纶化纤染色过程中全部废水的循环使用,每年节约用水52.8万t,削减CODcr排放量1056t,节约液碱288.75t,取得直接经济效益62.39万元,并且产品质量稳定,达到国家一等品质量要求。  相似文献   
59.
湖泊是人类十分重要的水资源,在工农业供水、淡水养殖、交通航运、城乡饮水、风景旅游以及调节环境等方面具有突出的地位和显著的经济效益.然而人类活动引起的营养性物质的大量排放,促进和加速了湖泊富营养化过程,严重影响湖泊水环境质量和功能,因此世界各国都非常重视湖泊富营养  相似文献   
60.
当前,开发新能源已为世界各国所关注,而微生物能源有其巨大的开发利用价值。如何开发这些微生物能源是摆在我们面前的一大课题,本文就以下几方面问题谈谈自己粗浅的认识。大气中的氮气含量高达80%,只有部分微生物能够利用自己体内的固氮酶,以细胞内的ATP为能源转化氮气为氨,进而合成氨基酸、蛋白质。由于工业的不断发展,煤、电、石油的消耗量与日俱增,现  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号