首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   16篇
  国内免费   29篇
安全科学   2篇
环保管理   7篇
综合类   64篇
基础理论   10篇
污染及防治   6篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   7篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   6篇
  2006年   9篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1993年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有89条查询结果,搜索用时 218 毫秒
81.
超声波预处理对餐厨垃圾产VFAs的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
采用超声波预处理餐厨垃圾以提高产挥发性脂肪酸(VFAs)产率.结果表明,在超声强度720W/L下处理15min后,餐厨垃圾SCOD含量比原样中SCOD提高了1倍,其中有机质中碳水化合物溶出量最大,由原样中8.2g/L提高到处理后的43.5g/L;在pH=6、温度35℃条件下,对含固率约为12%的餐厨垃圾进行厌氧发酵,未预处理和超声处理后的餐厨垃圾产生的VFAs最大值分别达到33.4,42.5g/L,经超声预处理的餐厨垃圾产VFAs的量提高了27.2%.  相似文献   
82.
NaCl对餐厨垃圾厌氧发酵产VFA浓度及组分的影响   总被引:3,自引:0,他引:3  
通过间歇实验研究了最适反应条件(pH值为6.0、温度为35℃)下NaCl含量对餐厨垃圾厌氧发酵产挥发性脂肪酸(VFA)的影响.考察了NaCl含量为0.0,3.0,6.0,9.0,12.0g/L下的有机酸浓度及组成情况.结果表明,NaCl对厌氧发酵液中VFA浓度影响显著,随NaCl含量提高VFA浓度呈下降趋势,当NaCl含量达到12.0g/L时,VFA浓度在第114h达到最大值4.14g/L,仅为未添加NaCl条件下的10.1%.发酵液中各组分变化经历丁酸积累、乙酸积累与乙酸消耗3个阶段,NaCl对厌氧发酵类型影响不显著,各批次发酵均为丁酸型发酵,仅当NaCl含量超过6.0g/L时丁酸积累阶段时间延长.  相似文献   
83.
吸附材料对钒矿污染土壤重金属的稳定化效果   总被引:3,自引:0,他引:3  
选用壳聚糖和活性炭两种吸附材料,分别以不同的质量比添加到供试土壤中,固化后进行毒性浸出实验,研究吸附材料对土壤中钒(V)、铬(Cr)的稳定化效果,并通过表征吸附材料的红外光谱(FTIR)和X射线光电子能谱(XPS)探究吸附材料对V、Cr的稳定化机理.结果表明,壳聚糖对V、Cr均有较好的稳定化效果,活性炭对V的稳定化效果不稳定,对Cr的稳定化效果很好.吸附材料添加量的改变对稳定化效果影响不大.稳定化30d时,0.5%壳聚糖对V、Cr的稳定化率分别为74.04%、46.77%;0.5%活性炭对V、Cr的稳定化率分别为1.86%、87.75%.FTIR和XPS表征结果表明,壳聚糖中含活性强的氨基和羟基较多,活性炭中含氨基、羟基较少.因此壳聚糖和活性炭可作为土壤重金属的稳定剂,使钒矿污染土壤得到修复.  相似文献   
84.
提出超声波和Fenton氧化协同作用来破解污泥,比较了单独的Fenton氧化和超声波耦合Fenton氧化对污泥粒径,溶解性物质和污泥上清液中多聚糖与蛋白质的影响.结果表明,污泥经过Fenton氧化和超声波耦合Fenton氧化处理后,污泥比表面积明显增加,体平均粒径和索太尔平均径都明显降低,污泥的絮凝体结构遭到了氧化破解,污泥的脱水性能和稳定性能得到了改善.超声波耦合对于污泥破解促进作用十分明显,表现在污泥的比表面积变得更大,粒径降低幅度更明显.这2种氧化对于污泥中SCOD的增加促进作用都十分明显,Fenton氧化处理后污泥SCOD从120.45mg/L增加到585.47mg/L,增加3.9倍,而超声波耦合Fenton氧化处理后,污泥中SCOD则能从120.45mg/L增加到767.47mg/L,增加5.4倍.单独的Fenton氧化处理,污泥上清液中多聚糖最高浓度为209.74mg/L,相对于原污泥的57.81 mg/L增加了2.6倍,而超声耦合Fenton氧化处理后污泥上清液中多聚糖最高浓度则为433.68mg/L,相对于原污泥增加了6.5倍.2种氧化对上清液中的蛋白质的作用则是先增加后下降.  相似文献   
85.
通过对干化后典型有机废弃物生物水解固相残渣制备垃圾衍生燃料(RDF)颗粒的优化,研究了含水率及添加剂对RDF物理化学性质的影响。以果蔬、厨余和园林等典型有机废弃物生物水解后的固相残渣作为原料,经生物干化处理后,在不同含水率及不同比例添加剂条件下,对其制备RDF的抗压强度、膨胀率、成型率以及热值等指标进行对比研究,结果表明:当含水率为30%时,RDF颗粒成型率可达到99.47%;含水率为25%左右时,RDF颗粒的成型性能更好,抗压强度为8.28 MPa,膨胀率为40.41%;当含水率为10%时,低位热值为15.98 MJ/kg,满足固体回收燃料3级标准(EN 15359—2011《固体燃料的恢复和规范》)。在RDF制备中,添加5%的硅酸钠粉末可有效提升其成型效果,且灰分含量可控制在8.55%左右,能更好地满足RDF颗粒储存、运输以及燃烧的需求。  相似文献   
86.
通过对不同类型的垃圾压缩转运站水、气、噪声污染的监测分析发现,转运站产生的渗滤液中有机和重金属污染严重,CODCr浓度高达32783~67867mg/L,站内混合废水约排放40kgCODCr/d;站内恶臭物质如三甲胺、甲硫醇、甲硫醚、二甲二硫等浓度严重超标,而转运站内、外臭气浓度均较高,可采用喷淋植物提取液除臭等控制手段;转运站厂界噪声L90测值约为65dB(A),垃圾压缩时的瞬时噪声较大。  相似文献   
87.
采用高固体厌氧消化工艺处理农作物秸秆,并利用污水处理厂污泥饼进行氮源补充,既可以减轻对秸秆和污泥处置带来的环境污染,更能产生大量的沼气能源和有机肥,缓解农村的能源供给压力和过度使用化肥造成的土壤贫瘠.对2个高固体厌氧消化反应器启动阶段的变化规律进行了研究,结果表明,秸秆经过NaOH化学预处理并投加5%左右的污泥调节C/N后,厌氧消化效果良好.启动期共计930 h,启动阶段完成了厌氧污泥活性的恢复和菌种的驯化.启动期结束时,进料含固率约为12%~16%,产气速率为0.15~0.18 L/h.启动阶段pH的变化和产气情况的变化呈现出较为明显的相关性.1号反应器的TS和VS降解率分别为54%和65%,2号反应器则为67%和75%.启动阶段COD浓度较低,为1 000~6 000 mg/L,氨氮浓度为200~600 mg/L.  相似文献   
88.
垃圾焚烧飞灰H3PO4稳定化技术及机理研究   总被引:2,自引:1,他引:1  
王军  蒋建国  隋继超  杨仕键 《环境科学》2006,27(8):1692-1696
分析了焚烧飞灰的全组分和浸出毒性,表明飞灰中含有多种重金属,其中Pb的浸出浓度为67.03mg/L,超过危险废物鉴别标准.研究了H3PO4投加量对飞灰稳定化效果及其环境长期稳定性的影响,结果表明:投加相当于飞灰质量8%~14%的H3PO4就能够有效地使焚烧飞灰无害化;8%和12%H3PO4稳定化飞灰都具有良好的环境稳定性;过多的H3PO4投加量会降低处理后飞灰对酸性环境的缓冲能力.对于12%H3PO4稳定化飞灰,XRD检测出Cr2P2O7、ZnP2、Pb3P4O13、Pb3P2O7、NaZnPO4、NaPbP3O9、Ca2ZnSi2O7等少量重金属的结晶相;SEM发现了大量独立存在的飞灰颗粒、直径约0.3~0.5μm的Pb5(PO4)3Cl棒状物;CHBr3浮选没有得到浓缩的重金属.综合分析得到:H3PO4是通过与强碱性飞灰之间的中和反应,激活飞灰中的重金属,改善稳定化进行的环境,并产生稳定化所需的PO43-.被激活的重金属与产生的PO43-在飞灰颗粒表面结合.所产生的重金属磷酸盐与SiO2、CaCO3、CaSO4、KCl和NaCl等飞灰主要构成固溶相,几乎不独立存在.  相似文献   
89.
在中温(35℃)条件下,应用连续式单级高固体厌氧消化技术,研究氨氮浓度在厨余垃圾处理过程中的变化规律.结果表明,在系统稳定运行阶段,投料强度为150.0g/d,挥发性固体甲烷转化率近90%,有机负荷达到4.94kgVS/(m3·d),反应速率为1.48m3CH4/(m3·d),运行情况较为理想.反应运行80d,氨氮浓度超过1700mg/L时,系统呈现氨氮抑制状态,有机负荷为0.77kgVS/(m3·d),反应速率为0.39m3CH4/(m3·d),较稳定运行期大幅度下降.在此过程中,氨氮浓度从消化初期的420mg/L逐渐递增到3000mg/L左右,其中在稳定运行过程中增加速率较大,平均37.15mg/(L·d).同时,微生物经过长期驯化,对高浓度氨氮的抵抗能力增强,系统运行至190d时,氨氮浓度再次升高至3000mg/L,产气速率仍可维持在1.07m3CH4/(m3·d),系统状态较为良好.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号