首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3558篇
  免费   3篇
  国内免费   59篇
安全科学   70篇
废物处理   193篇
环保管理   345篇
综合类   471篇
基础理论   1214篇
污染及防治   842篇
评价与监测   269篇
社会与环境   208篇
灾害及防治   8篇
  2023年   51篇
  2022年   99篇
  2021年   90篇
  2020年   22篇
  2019年   31篇
  2018年   144篇
  2017年   143篇
  2016年   218篇
  2015年   70篇
  2014年   47篇
  2013年   88篇
  2012年   446篇
  2011年   235篇
  2010年   47篇
  2009年   41篇
  2008年   70篇
  2007年   85篇
  2006年   82篇
  2005年   406篇
  2004年   540篇
  2003年   410篇
  2002年   46篇
  2001年   43篇
  2000年   27篇
  1999年   32篇
  1998年   5篇
  1997年   9篇
  1996年   3篇
  1995年   11篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   9篇
  1990年   4篇
  1989年   5篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1972年   2篇
  1969年   2篇
  1967年   2篇
  1966年   3篇
  1964年   2篇
  1957年   1篇
排序方式: 共有3620条查询结果,搜索用时 21 毫秒
71.
72.
73.
This study investigates the energy–growth nexus for transition countries analysing Granger causality between GDP growth per capita and energy use per capita. For this purpose, 17 countries located at Central and Eastern Europe and Caucasian region are chosen and a panel dataset consisting of these countries for the available period of 1990–2011 is studied. In the study, Granger causality is investigated using bootstrapped panel causality approach proposed by Konya (Econ Modell 23(6):978–992, 2006). The approach gives consistent results in case of cross-sectional dependency and heterogeneity of slope coefficients between countries. Causality is examined for two scenarios: one with a trend and one without a trend. The results reveal that, in general, there is no causality running between energy consumption and economic growth, yet there is causality running from energy consumption to economic growth for some countries and sign of the relationship is always negative. Therefore, increases in energy consumption harm economic growth.  相似文献   
74.
75.

Food loss and waste is a major issue affecting food security, environmental pollution, producer profitability, consumer prices, and climate change. About 1.3 billion tons of food products are yearly lost globally, with China producing approximately 20 million tons of soybean dregs annually. Here, we review food and agricultural byproducts with emphasis on the strategies to convert this waste into valuable materials. Byproducts can be used for animal and plant nutrition, biogas production, food, extraction of oils and bioactive substances, and production of vinegar, wine, edible coatings and organic fertilizers. For instance, bioactive compounds represent approximately 8–20% of apple pomace, 5–17% of orange peel, 10–25% of grape seeds, 3–15% of pomegranate peel, and 2–13% of date palm seeds. Similarly, the pharmaceutical industry uses approximately 6.5% of the total output of gelatin derived from fish bones and animal skin. Animals fed with pomegranate peel and olive pomace improved the concentration of deoxyribonucleic acid and protein, the litter size, the milk yield, and nest characteristics. Biogas production amounts to 57.1% using soybean residue, 53.7% using papaya peel, and 49.1% using sugarcane bagasse.

  相似文献   
76.
Sampling of the offshore seabed sediments of southwestern part of the Caspian Sea was carried out by gravity corer in order to study heavy metal concentration and the physicochemical factors controlling their distribution in the fine-grained fraction. The grain size distribution, amount, and type of clay minerals, total organic carbon (TOC) content, and Eh–pH of the sediments were determined. The average concentrations of the heavy metals in ppm are Mn (563), Cu (207.5), Sr (187), Zn (94), Pb (26.3), Ni (14.5), Co (11.5), Cd (2.56), and Ag (1.04) in their order of abundances. Co and Zn mostly indicate increase in silt-size fraction of the sediments suggesting their probable detrital provenance but the Mn, Ni, Cu, Sr, Pb, Cd, and Ag concentrations show a similar trend to distribution of the clay-size fraction. The concentrations of Mn, Co, and Cd increase with increase in the TOC content but the Cu, Pb, Ni, Ag, and Sr concentrations decrease with increase of the TOC content. The amounts of Zn, Cu, Sr, Pb, Cd, and Ag increase with increase in the CaCO3 content. The calculated enrichment factor indicates that the sediments are very strong to extremely enriched in Ag, significantly enriched in Cu and Cd, and depleted to mineral for Pb, Sr, Co, Ni, and Zn. Variations of the Cu, Sr, Cd, Ag, and Pb concentrations are similar to the clay and CaCO3 distributions.  相似文献   
77.
The Taranto basin is a shallow water marine system in the South of Italy characterized by the presence of a lagoon environment together with a semi-enclosed bay connected to the Ionian Sea. This marine system experienced over the last few decades strong biochemical pollution and environmental degradation, and it is considered a hotspot study site for economic, ecological and scientific reasons. The aim of this study was to examine, on an annual temporal scale and with high spatial resolution, the main hydrodynamical processes and transport scales of the system by means of a 3D finite element numerical model application, adopting the most realistic forcing available. The model allowed us to assess the role played by baroclinic terms in the basin circulation, describing its estuarine nature. In particular, the main features of water circulation, salinity and temperature distribution, water renewal time and bottom stress were investigated. Our results allowed us to equate this system dynamic to that of a weakly stratified estuary, identifying the main driving sources of this mechanism. The vertical stratification over the whole year was proved to be stable, leading to a dual circulation flowing out on the surface, mainly through Porta Napoli channel, and inflowing on the bottom mainly through Navigabile channel. This process was responsible also for the renewal time faster on the bottom of the Mar Piccolo basin than the surface. Due to the great importance of the Taranto basin for what concerns sediment pollution, also the effect of currents in terms of bottom stress was investigated, leading to the conclusion that only in the inlets area the values of bottom stress can be high enough to cause erosion.  相似文献   
78.
79.
The main objectives of this work were to identify and determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace metals in carpet dust samples from various mosques of the city of Riyadh and to assess the health risks associated with the exposure to these pollutants. Therefore, 31 samples of mosque’s carpet dust from Riyadh were collected. The results showed that 14 PAHs were present in the dust samples with concentrations ranged from 90 to 22,146 ng g?1 (mean = 4096 ± 4277 ng g?1) where low molecular weight compounds were dominant. The presence of PAHs were in the order of naphthalene > chrysene and benzo(b)fluoranthene > benzo(a)pyrene > acenaphthene and benzo(k)fluoranthene > pyrene and the absence of indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene. The diagnostic ratio coupled with principle component analysis (PCA) revealed mix sources of petrogenic from traffic, stack emission, and pyrogenic inputs from essence and perfumed wood burning. Trace metals were significant in the dust samples, and their concentrations decrease in the order of Zn, Mn, Cu, Cr, Pb, Ni, and V where Zn being the highest (94.4 ± 91.5 μg g?1) and indium was the lowest (1.9 ± 9.3 μg g?1). The trace metals were major in southern and central parts of Riyadh and followed the order of central Riyadh > southern Riyadh > western Riyadh > eastern Riyadh > northern Riyadh. Estimated risk based on the total PAHs was found to be 4.30 × 10?11 for adult and 1.56 × 10?11 for children. Elemental non-cancer risk for adults ranged from 7.9 × 10?4 for Co to 7.58 × 10?1 for Li and for children ranged from 3.70 × 10?3 for Co to 3.54 for Li. Policy implication and mitigations of PAHs in Riyadh and Saudi Arabia were highlighted.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号