首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   5篇
环保管理   11篇
综合类   1篇
基础理论   1篇
污染及防治   2篇
评价与监测   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   4篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  1960年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
11.
Understanding the best way to allocate limited resources is a constant challenge for water quality improvement efforts. The synoptic approach is a tool for geographic prioritization of these efforts. It uses a benefit-cost framework to calculate indices for functional criteria in subunits (watersheds, counties) of a region and then rank the subunits. The synoptic approach was specifically designed to incorporate best professional judgment in cases where information and resources are limited. To date, the synoptic approach has been applied primarily to local or regional wetland restoration prioritization projects. The goal of this work was to develop a synoptic model for prioritizing watersheds within which suites of agricultural best management practices (BMPs) can be implemented to reduce sediment load at the watershed outlets. The model ranks candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most sediment load reduction per conservation dollar invested. The model can be applied anywhere and at many scales provided that the selected suite of BMPs is appropriate for the evaluation area’s biophysical and climatic conditions. The model was specifically developed as a tool for prioritizing BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS conservation effects assessment project (CEAP). This paper presents the testing of the model in the little river experimental watershed (LREW) which is located near Tifton, Georgia, USA and is the CEAP watershed representing the southeastern coastal plain. The application of the model to the LREW demonstrated that the model represents the physical drivers of erosion and sediment loading well. The application also showed that the model is quite responsive to social and economic drivers and is, therefore, best applied at a scale large enough to ensure differences in social and economic drivers across the candidate watersheds. The prioritization model will be used for planning purposes. Its results are visualized as maps which enable resource managers to identify watersheds within which BMP implementation would result in the most water quality improvement per conservation dollar invested.  相似文献   
12.
Metabolic profiling in plants can be used to differentiate between treatments and to search for biomarkers for exposure. A methodology for processing Ultra-High-Performance Liquid Chromatography-Diode-Array-Detection data is devised. This methodology includes a scheme for selecting informative wavelengths, baseline removal, retention time alignment, selection of relevant retention times, and principal component analysis (PCA). Plant crude extracts from rapeseed seedling exposed to sublethal concentrations of glyphosate are used as a study case. Through this approach, plants exposed to concentrations down to 5 μM could be distinguished from the controls. The compounds responsible for this differentiation were partially identified and were different from those specific for high exposure samples, which suggests that two different responses to glyphosate are elicited in rapeseed depending on the level of exposure. The PCA loadings indicate that a combination of other metabolites could be more sensitive than the response of shikimate to detect glyphosate exposure.  相似文献   
13.
This paper describes the construction of and the data obtained from a light transmissometer capable of making mean drop size measurements within about ±15%. The experimental venturi had a throat flow cross-section of 12 in. by 14 in. and overall length in the flow direction was 15 ft. It was found that the Nukiyama-Tanasawa equation gave accurate estimates of Sauter mean drop size only for a throat velocity of 150 ft/sec.  相似文献   
14.
Costa Rica is a nation with a vast wealth of water resources; however, recently the country has faced water conflicts (WC) due to social, economic, legal, and political impediments in response to limited water availability during El Niño events and inefficient use of its water resources. This study presents a spatial distribution and temporal analysis of WC in Costa Rica from 2005 to 2015. In total, 719 WC were analyzed of which 54% were among private individuals and government. The largest urban areas and the Grande de Tárcoles Basin were identified as the main “hot spot” for the conflicts. WC were mainly caused by spills of wastewater, water pollution, water shortage, infrastructure damage, and flooding, and can be predicted using a multiple linear model including the population size and the number of hydro‐meteorological events (HME) (R2 = 0.77). The identified HME also coevolved significantly with the changes in precipitation regimes (r = 0.67, = 0.021). Our results suggest that there is a need to recognize that water infrastructure longevity across the country concatenates and amplifies WC, mainly in the most populated area located in the Central Valley. Implications of our findings include the need for truly integrated water resources management plans that include, for example, WC as indicators of hydro‐climatic changing conditions and water supply and sanitation infrastructure status.  相似文献   
15.
Abstract: We present a method to integrate a process‐based (PB) snowmelt model that requires only daily temperature and elevation information into the Soil and Water Assessment Tool (SWAT) model. The model predicts the spatiotemporal snowpack distribution without adding additional complexity, and in fact reduces the number of calibrated parameters. To demonstrate the utility of the PB model, we calibrate the PB and temperature‐index (TI) SWAT models to optimize agreement with stream discharge on a 46‐km2 watershed in northwestern Idaho, United States, for 10 individual years and use the calibrated parameters for the year with the best agreement to run the model for 15 remaining years. Stream discharge predictions by the PB and TI model were similar, although the PB model simulated snowmelt more accurately than the TI model for the remaining 15‐year period. Spatial snow distributions predicted by the PB model better matched observations from LandSat imagery and a SNOTEL station. Results for this watershed show that including PB snowmelt in watershed models is feasible, and calibration of TI‐based watershed models against discharge can incorrectly predict snow cover.  相似文献   
16.
Very few hydrological models commonly used in watershed management are appropriate for simulating the saturation excess runoff. The Soil Moisture Routing model (SMR) was developed specifically to predict saturation excess runoff from variable source areas, especially for areas where shallow interflow controls saturation. A recent version of SMR was applied to two rural catchments in the Catskill Mountains to evaluate its ability to simulate the hydrology of these systems. Only readily available meteorological, topographical, and landuse information from published literature and governmental agencies was used. Measured and predicted streamflows showed relatively good agreement; the average Nash–Sutcliffe efficiency for the two watersheds were R 2=72% and R 2=63%. Distributed soil moisture contents and the locations of hydrologically sensitive areas were also predicted well.  相似文献   
17.
The Science of Nature -  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号