首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   0篇
  国内免费   4篇
安全科学   3篇
废物处理   4篇
环保管理   27篇
综合类   220篇
基础理论   21篇
污染及防治   35篇
评价与监测   4篇
社会与环境   1篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1995年   6篇
  1994年   4篇
  1984年   5篇
  1978年   4篇
  1977年   4篇
  1975年   5篇
  1968年   4篇
  1964年   3篇
  1963年   6篇
  1961年   9篇
  1960年   6篇
  1959年   5篇
  1958年   11篇
  1957年   6篇
  1955年   6篇
  1954年   5篇
  1953年   3篇
  1947年   3篇
  1943年   5篇
  1941年   5篇
  1939年   4篇
  1938年   5篇
  1937年   4篇
  1935年   4篇
  1934年   4篇
  1933年   3篇
  1932年   3篇
  1929年   3篇
  1928年   5篇
  1926年   3篇
  1925年   3篇
  1923年   6篇
  1921年   3篇
  1920年   3篇
  1919年   5篇
  1916年   3篇
  1915年   3篇
  1914年   6篇
  1913年   5篇
排序方式: 共有315条查询结果,搜索用时 31 毫秒
311.
In 1993 the Swiss agricultural policy was revised with – amongst other goals – the objective of improving the environmental performance of agriculture. A voluntary agri-environmental scheme to promote integrated production (IP) was introduced. In 1999 the IP standards were integrated in cross compliance requirements and termed Proof of Ecological Performance (PEP). We evaluated the effectiveness of this policy in terms of reducing diffuse nitrogen (N) and phosphorus (P) pollution of ground and surface water. We combined monitoring schemes covering the reference period from before the introduction of IP/PEP (1990–1992) with the evaluation of cause/effect relationships in selected case-study areas. The evaluation showed an overall reduction of diffuse N and P pollution from agriculture even though some goals were not reached. Nitrate leaching declined, but only a 3–4 mg L−1 reduction was observed rather than the intended decrease of 5 mg L−1. The P pollution of surface waters from agriculture decreased by only 10–30% instead of 50%. The intended reduction of the nitrogen surplus of Swiss agriculture by 33% was not attained, but the P surplus of Swiss agriculture was more than halved. IP/PEP practices that improved N and P management included reduced N and P fertiliser inputs and pig and poultry feedstuffs with reduced N and P contents, both of which are a consequence of the requirement of equilibrated farm nutrient balances, as well as increased use of cover cropping and of conservation tillage systems.  相似文献   
312.
N-nitrosodimethylamine (NDMA) is a carcinogenic by-product of chlorination that is frequently found in municipal wastewater effluent. NDMA is miscible in water and negligibly adsorbed to soil, and therefore may pose a threat to ground water when treated wastewater is used for landscape irrigation. A field study was performed in the summer months under arid Southern California weather conditions to evaluate the leaching potential of NDMA in turfgrass soils during wastewater irrigation. Wastewater was used to irrigate multiple turfgrass plots at 110 to 160% evapotranspiration rate for about 4 mo, and leachate was continuously collected and analyzed for NDMA. The treated wastewater contained relatively high levels of NDMA (114-1820 ng L(-1); mean 930 ng L(-1)). NDMA was detected infrequently in the leachate regardless of the soil type or irrigation schedule. At a method detection limit of 2 ng L(-1), NDMA was only detected in 9 out of 400 leachate samples and when it was detected, the NDMA concentration was less than 5 ng L(-1). NDMA was relatively persistent in the turfgrass soils during laboratory incubation, indicating that mechanisms other than biotransformation, likely volatilization and/or plant uptake, contributed to the rapid dissipation. Under conditions typical of turfgrass irrigation with wastewater effluent it is unlikely that NDMA will contaminate ground water.  相似文献   
313.
N-nitrosodimethylamine (NDMA) is a potent carcinogen that is often present in municipal wastewater effluents. In a previous field study, it was observed that NDMA did not leach through turfgrass soils following 4 mo of intensive irrigation with NDMA-containing wastewater effluent. To better understand the loss pathways for NDMA in landscape irrigation systems, a mass balance approach was employed using in situ lysimeters treated with 14C-NDMA. When the lysimeters were subjected to irrigation and field conditions after NDMA application, very rapid dissipation of NDMA was observed for both types of soil used in the field plots. After only 4 h, total 14C activity in the lysimeters decreased to 19.1 to 26.1% of the applied amount, and less than 1% of the activity was detected below the 20-cm depth. Analysis of plant materials showed that less than 3% of the applied 14C was incorporated into the plants, suggesting only a minor role for plant uptake in removing NDMA from the vegetated soils. The rapid dissipation and limited downward movement of NDMA in the in situ lysimeters was consistent with the negligible leaching observed in the field study, and suggests volatilization as the only significant loss pathway. This conclusion was further corroborated by rapid NDMA volatilization found from water or a thin layer of soil under laboratory conditions. In a laboratory incubation experiment, prolonged wastewater irrigation did not result in enhanced NDMA degradation in the soil. Therefore, although NDMA may be present at relatively high levels in treated wastewater, gaseous diffusion and volatilization in unsaturated soils may effectively impede significant leaching of NDMA, minimizing the potential for ground water contamination from irrigation with treated wastewater.  相似文献   
314.
A coupled atmosphere–ocean general circulation model, ECHAM5-MPIOM, was used to study the multicompartmental cycling and long-range transport of persistent and semivolatile organics. Multiphase systems in air and ocean are covered by submodels for atmospheric aerosols, HAM, and marine biogeochemistry, HAMOCC5, respectively. The model, furthermore, encompasses 2D surface compartments, i.e. top soil, vegetation surfaces and sea-ice. The total environmental fate of γ-hexachlorocyclohexane (γ-HCH, lindane) and dichlorophenyltrichloroethane (DDT) in agriculture were studied.DDT is mostly present in the soils, the water-soluble γ-HCH in soils and ocean. DDT has the longest residence time in almost all compartments. Quasi-steady state with regard to substance accumulation is reached within a few years in air and vegetation surfaces. In seawater the partitioning to suspended and sinking particles contributes to the vertical transport of substances. On the global scale deep water formation is, however, found to be more efficient. Up to 30% of DDT but only less than 0.2% of γ-HCH in seawater are stored in particulate matter.On the time scale studied (1 decade) and on global scale substance transport in the environment is determined by the fast atmospheric circulation. The meridional transport mechanism, for both compounds, is significantly enhanced by multi-hopping. Net meridional transport in the ocean is effective only regionally, mostly by currents along the western boundaries of Africa and the Americas. The total environmental burdens of the substances experience a net northward migration from their source regions, which is more pronounced for DDT than for γ-HCH. Due to the application distribution, however, after 10 years of simulation 21% of the global environmental burden of γ-HCH and 12% of DDT have accumulated in the Arctic.  相似文献   
315.
Arsenic speciation in plants growing in arsenic-contaminated sites   总被引:2,自引:0,他引:2  
Concentrations of total arsenic and of arsenic species were determined by ICPMS and HPLC-ICPMS in terrestrial plant samples. The arsenic concentration in plant samples from the contaminated sites ranged from 1.14 to 98.5 mg kg(-1) (dry mass). However, a very high value, exceeding largely this range was found in a moss sample growing in the contaminated area (1750 mg kg(-1)). Plants growing in a non-contaminated area with similar geological characteristics contained 0.06-0.58 mg As kg(-1). Plant samples from different species were selected and extracted with water, water/methanol (9+1, v/v), and water/methanol (1+1, v/v). Water/methanol (9+1, v/v) was selected as extractant for the speciation analysis for all the plant samples. The extraction efficiencies ranged from 3.0% to 41.4%, with good agreement between samples from the same plant species. Arsenite and/or arsenate were found in all the plant samples. Additionally, methylarsonate (MA), dimethylarsinate (DMA), trimethylarsine oxide (TMAO) and tetramethylarsonium ion (TETRA) were also identified in several plants, and in some cases MA and DMA were the main species found. TMAO, which is usually found as a trace constituent in organisms, was also a significant arsenical in one of the studied samples, where it constituted 24% of the extracted arsenic. In the present study, the patterns of arsenic species varied with the plant species and much higher proportion of organoarsenicals was found in plants from the more contaminated sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号