首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29711篇
  免费   351篇
  国内免费   332篇
安全科学   855篇
废物处理   1070篇
环保管理   4053篇
综合类   4819篇
基础理论   8584篇
环境理论   21篇
污染及防治   7787篇
评价与监测   1759篇
社会与环境   1245篇
灾害及防治   201篇
  2022年   182篇
  2021年   189篇
  2019年   223篇
  2018年   398篇
  2017年   386篇
  2016年   568篇
  2015年   499篇
  2014年   694篇
  2013年   2147篇
  2012年   876篇
  2011年   1290篇
  2010年   1037篇
  2009年   1057篇
  2008年   1264篇
  2007年   1356篇
  2006年   1203篇
  2005年   1017篇
  2004年   1010篇
  2003年   944篇
  2002年   939篇
  2001年   1253篇
  2000年   877篇
  1999年   555篇
  1998年   429篇
  1997年   435篇
  1996年   453篇
  1995年   486篇
  1994年   439篇
  1993年   399篇
  1992年   415篇
  1991年   377篇
  1990年   377篇
  1989年   412篇
  1988年   347篇
  1987年   300篇
  1986年   277篇
  1985年   305篇
  1984年   286篇
  1983年   321篇
  1982年   322篇
  1981年   271篇
  1980年   243篇
  1979年   269篇
  1978年   229篇
  1977年   195篇
  1976年   200篇
  1975年   192篇
  1974年   172篇
  1973年   171篇
  1972年   198篇
排序方式: 共有10000条查询结果,搜索用时 859 毫秒
91.
In order to reduce the environmental impact due to land disposal of oil fly ash from power plants and to valorize this waste material, the removal of vanadium was investigated using leaching processes (acidic and alkaline treatments), followed by a second step of metal recovery from leachates involving either solvent extraction or selective precipitation. Despite a lower leaching efficiency (compared to sulfuric acid), sodium hydroxide was selected for vanadium leaching since it is more selective for vanadium (versus other transition metals). Precipitation was preferred to solvent extraction for the second step in the treatment since: (a) it is more selective; enabling complete recovery of vanadate from the leachate in the form of pure ammonium vanadate; and (b) stripping of the loaded organic phase (in the solvent extraction process) was not efficient. Precipitation was performed in a two-step procedure: (a) aluminum was first precipitated at pH 8; (b) then ammonium chloride was added at pH 5 to bring about vanadium precipitation.  相似文献   
92.
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature.  相似文献   
93.
A new method to diagnose the environmental sustainability of specific orchard management practices was derived and tested. As a significant factor for soil quality, the soil carbon (C) management in the topsoil of the tree-row of an integrated and organic apple orchard was selected and compared. Soil C management was defined as land management practices that maintain or increase soil C. We analyzed the impact of the soil C management on biological (microbial biomass C, basal respiration, dehydrogenase activity, respiratory quotient) and physical (aggregate stability, amount of plant-available water, conductive mean pore diameter near water saturation) soil properties. Soil in the alley acted as a reference for the managed soil in the tree row. The total and hot-water-extractable C amounts served as a combined proxy for the soil C management. The soil C management accounted for 0 to 81% of the degradation or enhancement of biophysical soil properties in the integrated and organic system. In the integrated system, soil C management led to a loss of C in the top 0.3 m of the tree row within 12 yr, causing a decrease in microbial activities. In the tree row of the organic orchard, C loss occurred in the top 0.1 m, and the decrease in microbial activities was small or not significant. Regarding physical soil properties, the C loss in the integrated system led to a decrease of the aggregate stability, whereas it increased in the organic system. Generally, the impact of soil C management was better correlated with soil microbial than with the physical properties. With respect to environmental soil functions that are sensitive to the decrease in microbial activity or aggregate stability, soil C management was sustainable in the organic system but not in the integrated system.  相似文献   
94.
A passive air sampler was developed for collecting polycyclic aromatic hydrocarbons (PAHs) in air mass from various directions. The airflow velocity within the sampler was assessed for its responses to ambient wind speed and direction. The sampler was examined for trapped particles, evaluated quantitatively for influence of airflow velocity and temperature on PAH uptake, examined for PAH uptake kinetics, calibrated against active sampling, and finally tested in the field. The airflow volume passing the sampler was linearly proportional to ambient wind speed and sensitive to wind direction. The uptake rate for an individual PAH was a function of airflow velocity, temperature and the octanol-air partitioning coefficient of the PAH. For all PAHs with more than two rings, the passive sampler operated in a linear uptake phase for three weeks. Different PAH concentrations were obtained in air masses from different directions in the field test.  相似文献   
95.
We describe the development and validation of a portable system comprising an air sampler coupled to an automated flow injection analysis device. The system is able to monitor airborne concentrations of subtilisin-type enzymes in the workplace atmosphere on a continuous basis. Sampling is in two stages: using a sampling head that is designed to mimic human respiration at approx. 1 m s(-1) at a sampling rate of 600 l min(-1). In the second stage, the captured particles are deposited by impaction from the air stream onto the inner surface of a cyclone that is continuously washed with a jet of buffer solution. Deposited particles are then washed into a reservoir from which samples are taken every 5-6 min and injected automatically into a continuous flow injection analysis system. Proteolytic enzyme in the sample passes through a bioreactor maintained at about 40 degrees C. This contains a cellulose solid phase matrix on which is covalently immobilised Texas Red-labelled gelatin as substrate. The passing enzyme partially digests the substrate releasing fluorophore that is detected down stream in a flow cell coupled to a fluorimeter. The system is calibrated using enzyme standards and the intensity of the resulting peaks from the ex-air samples is converted to airborne concentrations using a mathematical model programmed into a PC. The system has a limit of detection of 4.8 ng m(-3) and a dynamic range of 5-60 ng m(-3). The within assay precision (RSD) is 6.3-9.6% over this range. The within batch precision is 20.3% at 20 ng m(-3) and the corresponding between batch value is 19.5%. The system has been run for periods up to 8 h in the laboratory and for up to 4 h at a factory site and the values obtained compared with time-averaged values obtained from a conventional Galley sampler and in-house analysis when reasonable agreement of the results was observed. The stability of the system over 21 days of continuous use with standards injected periodically was studied. Linearity was observed for all the standard plots throughout. At the end of 21 days, after a total exposure equivalent to 2395 ng ml(-1) of Savinase, the signal due to the 5.0 ng ml(-1) standard was still easily detectable.  相似文献   
96.
In wetlands, translocation of Fe and Mn from reducing to oxidizing zones creates localized enrichments and depletions of oxide minerals. In zones of enrichment, oxides cement matrix particles together into aggregates. In this paper, we describe the various Fe- and Mn-cemented features present in the 1 to 2-mm size fraction of mine-waste contaminated wetland soils of the Coeur d'Alene (CDA) River Basin in northern Idaho. These aggregates are categorized based on color and morphology. Total Fe and Mn concentrations are also reported. Distribution of the aggregates in soil profiles along an elevation transect with varying water table heights was investigated. Six distinct categories of aggregates were characterized in the 1 to 2-mm size fraction. The two most predominant categories were aggregates cemented by only Fe oxides and aggregates cemented by a mixture of Fe and Mn oxides. Iron-depleted aggregates, Fe and Mn-cemented sand aggregates, and root channel linings were also identified. The remaining aggregates were categorized into a catch-all category that consisted of primarily charcoal particles. The highest Fe content was in the root channel linings, and the highest Mn content was in the Fe/Mn cemented particles. Iron-cemented aggregates were most common in surface horizons at all sites, and root channels were most common in the 30 to 45-cm core at the lowland point, reflecting the presence of deep rooting vegetation at this site. Spatial distributions of other aggregates at the site were not significant.  相似文献   
97.
98.
Thermophilic anaerobic digestion of swine manure represents a potential waste treatment technology to address environmental concerns, such as odor emissions and removal of pathogenic microorganisms. However, there are concerns relative to the stability of this process when swine manure is the sole substrate. In this study, the potential of biogas production from swine manure as the sole substrate under thermophilic (50 degrees C) conditions was investigated in the laboratory, to determine whether separation of urine and feces as part of the waste collection process would benefit anaerobic digestion. Effluent from a continuously stirred tank reactor was used as the inoculum for batch tests, in which the substrate contained three different concentrations of urine (urine-free, as-excreted urine-to-feces ratio and double the as-excreted urine-to-feces ratio). Inocula were acclimated to these same urine-to-feces ratios to determine methane production. Results show that both urine-free and as-excreted substrates were not inhibitory to anaerobic inocula. Anaerobic microorganisms can be readily acclimated to substrate with double the as-excreted urine concentration, which contained nitrogen concentrations up to 7.20 g/L. Cumulative methane production reached similar levels in the batch tests, regardless of the substrate urine concentration.  相似文献   
99.
Gaseous elemental mercury (GEM), particulate mercury (PHg) and reactive gaseous mercury (RGM) were measured every other hour at a rural location in south central Wisconsin (Devil's Lake State Park, WI, USA) between April 2003 and March 2004, and at a predominantly downwind urban site in southeastern Wisconsin (Milwaukee, WI, USA) between June 2004 and May 2005. Annual averages of GEM, PHg, and RGM at the urban site were statistically higher than those measured at the rural site. Pollution roses of GEM and reactive mercury (RM; sum of PHg and RGM) at the rural and urban sites revealed the influences of point source emissions in surrounding counties that were consistent with the US EPA 1999 National Emission Inventory and the 2003-2005 US EPA Toxics Release Inventory. Source-receptor relationships at both sites were studied by quantifying the impacts of point sources on mercury concentrations. Time series of GEM, PHg, and RGM concentrations were sorted into two categories; time periods dominated by impacts from point sources, and time periods dominated by mercury from non-point sources. The analysis revealed average point source contributions to GEM, PHg, and RGM concentration measurements to be significant over the year long studies. At the rural site, contributions to annual average concentrations were: GEM (2%; 0.04 ng m(-3)); and, RM (48%; 5.7 pg m(-3)). At the urban site, contributions to annual average concentrations were: GEM (33%; 0.81 ng m(-3)); and, RM (64%; 13.8 pg m(-3)).  相似文献   
100.
Ammonia is an important water quality variable, which in excess, can be detrimental to waterways and their ecosystems. In the Ecosystem Health Monitoring Program in South-east Queensland ammonia is monitored monthly, however, often more than 50% of the ammonia observations in Moreton Bay are below detection limit, making it difficult to draw useful inferences. In this paper a clipped Gaussian random field is used to spatially model and map the probability of detectable concentration of ammonia. The methodology is applied to the Moreton Bay samples collected in February 2005. The results suggest that for this month the oceanic impacted areas have higher probability of detectable ammonia concentration than the areas closer to the main sources of anthropogenic inputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号