首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29721篇
  免费   335篇
  国内免费   245篇
安全科学   999篇
废物处理   1453篇
环保管理   3941篇
综合类   4468篇
基础理论   7748篇
环境理论   8篇
污染及防治   7336篇
评价与监测   2125篇
社会与环境   2043篇
灾害及防治   180篇
  2023年   132篇
  2022年   255篇
  2021年   318篇
  2020年   195篇
  2019年   243篇
  2018年   435篇
  2017年   460篇
  2016年   719篇
  2015年   531篇
  2014年   854篇
  2013年   2464篇
  2012年   1015篇
  2011年   1350篇
  2010年   1102篇
  2009年   1144篇
  2008年   1410篇
  2007年   1329篇
  2006年   1207篇
  2005年   1079篇
  2004年   1037篇
  2003年   990篇
  2002年   933篇
  2001年   1091篇
  2000年   768篇
  1999年   482篇
  1998年   363篇
  1997年   383篇
  1996年   397篇
  1995年   465篇
  1994年   394篇
  1993年   343篇
  1992年   376篇
  1991年   355篇
  1990年   326篇
  1989年   322篇
  1988年   295篇
  1987年   241篇
  1986年   247篇
  1985年   247篇
  1984年   267篇
  1983年   254篇
  1982年   268篇
  1981年   221篇
  1980年   165篇
  1979年   181篇
  1978年   162篇
  1977年   133篇
  1975年   137篇
  1973年   167篇
  1972年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature.  相似文献   
72.
73.
Background, Aims and Scope Sediments of the Spittelwasser creek are highly polluted with organic compounds and heavy metals due to the discharge of untreated waste waters from the industrial region of Bitterfeld-Wolfen, Germany over the course of more than one century. However, relatively few data have been published about the chloroorganic contamination of the sediment. This paper reports on the content of different (chloro)organic compounds with special emphasis on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), and chlorobenzenes. Existing concepts for the remediation of Spittelwasser sediment include the investigation of natural attenuation processes, which largely depend on the presence of an intact microbial food web. In order to gain more insight in terms of biological activity, we analyzed the capacity of sediment microflora to degrade organic matter by measuring the activities of extracellular hydrolytic enzymes involved in the biogeochemical cycling of carbon, nitrogen, phosphorus and sulfur. Furthermore, the detection of physiologically active bacteria in the sediment, particularly of those known for their capability to reductively dehalogenate organochlorine compounds, illustrates the potential for intrinsic bioremediation processes. Methods PCDD/F and chlorobenzenes were analyzed by gas chromatography(GC)/mass spectrometry and GC/flame ionization detection, respectively. The activities of hydrolytic enzymes were determined from freshly sampled sediment layers using 4-methylumbelliferyl (MUF) or 7-amino-4-methylcoumarin-conjugated model compounds and kinetic fluorescence measurements. Physiologically active bacteria from different sediment layers were microscopically visualized by fluorescence in situ hybridization (FISH). Specific bacteria were identified by 16S rRNA gene amplification and sequencing. Results and Discussion The PCDD/F congener profile was dominated by dibenzofurans. In addition, the presence of specific tetra and pentachlorinated dibenzofurans supported the assumption that extensive magnesium production was one possible source for the high contamination. A range of other chloroorganic compounds, including several isomers of chlorobenzenes, hexachlorocyclohexane and 1,1,1-trichloro-2,2-bis (p-chloro-phenyl)ethane (DDT), was present in the sediment. Activities of extracellular hydrolytic enzymes showed a strong decrease in those sediment layers that were characterized by high contents of absorbable organic halogen (AOX), indicating disturbed organic matter decay. Interestingly, an abnormal increase of cellulolytic enzyme activities below the organochlorine-rich layers was observed, possibly caused by residual cellulose from discharges of sulfite pulping wastes. FISH revealed physiologically active bacteria in most sediment layers from the surface down to the depth of about 60 cm, including members of Desulfitobacterium (D.) and Sulfurospirillum. The presence of D. dehalogenans was confirmed by its partial 16S rRNA gene sequence. Conclusions Results of chemical sediment analyses demonstrated high loads of organochlorine compounds, particularly of PCDD/F. Several years after stopping the waste water discharge to Spittelwasser creek, this sediment remains a main source for pollution of the downstream river system by way of the ongoing mobilization of sediment during high floods. As indicated by our enzyme activity measurements, the decomposition potential for organic matter is low in organochlorine-rich sediment layers. In contrast, the comparably higher enzyme activities in less organochlorine-polluted sediment layers as well as the presence of physiologically active bacteria suggest a considerable potential for natural attenuation. Recommendations and Perspectives From our data we strongly recommend to explore the degradative capacity of sediment microorganisms and the limits for in situ activity towards specific sediment pollutants in more detail. This will give a sound basis for the integration of bioremediation approaches into general concepts to reduce the risk that permanently radiates from this highly contaminated sediment. Submission Editor: Dr. Henner Hollert (Henner.Hollert@urz.uniheidelberg.de)  相似文献   
74.
With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.  相似文献   
75.
76.
A method for estimating the current state of plant communities based on the ecological amplitudes of constituent species is proposed. An original program, Fitoindikatsiya, has been developed to compute the indices of disturbance and homogeneity of plant communities from species ecological scale values. The current state of pine forests in the part of Novosibirsk oblast east of the Ob River has been analyzed; slightly, moderately, and severely disturbed zones have been distinguished.  相似文献   
77.
78.
79.
80.
The effects of food availability, female size, and social interactions on the quality of Pomacentrus amboinensis larvae at hatching were examined using two field-based experiments. In Experiment 1, food availability and female size significantly influenced size, eye diameter and levels of yolk reserves of larvae at hatching. Small females (47 to 52 mm standard length, SL) whose diets were not supplemented, produced the longest larvae (3.0 ± 0.01 mm total length, TL) with the least yolk reserves (50.1 ± 1.04 μm2). Irrespective of female size, those that received additional food produced larvae with the largest yolk-sacs (large females: 87.60 ± 1.53 μm2; small females: 80.14 ± 1.24 μm2). In Experiment 2, interactions with conspecifics had a greater affect on the somatic development of larvae at hatching than food availability. Increased social interactions resulted in larvae that were ⋍3% longer, with 2% greater head depth, than larvae from females that spawned in isolation on the experimental reefs. Fed females produced larvae with ⋍20% more yolk than larvae from females whose diets were not supplemented. All three factors (food availability, female size, and intensity of social interactions) tested within these experiments vary spatially and temporally among reefs. There is the potential, therefore, for larvae at the onset of the planktonic stage to vary in quality, level of development, and probability of survival. Received: 12 August 1996 / Accepted: 26 August 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号