首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
废物处理   11篇
环保管理   6篇
综合类   5篇
基础理论   4篇
污染及防治   9篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
排序方式: 共有35条查询结果,搜索用时 312 毫秒
21.
This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020.Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.  相似文献   
22.
Waste incineration bottom ash fine fraction contains a significant amount of aluminium, but previous works have shown that current recovery options based on standard on-step Eddy Current Separation (ECS) have limited efficiency. In this paper, we evaluated the improvement in the efficiency of ECS by using an additional step of crushing and sieving. The efficiency of metallic Al recovery was quantified by measuring hydrogen gas production. The ash samples were also tested for total aluminium content with X-ray fluorescence spectroscopy (XRF). As an alternative to material recovery, we also investigated the possibility to convert residual metallic Al into useful energy, promoting H2 gas production by reacting metallic Al with water at high pH. The results show that the total aluminium concentration in the <4 mm bottom ash fraction is on average 8% of the weight of the dry ash, with less than 15% of it being present in the metallic form. Of this latter, only 21% can be potentially recovered with ECS combined with crushing and sieving stages and subsequently recycled. For hydrogen production, using 10 M NaOH at 1 L/S ratio results in the release of 6–11 l of H2 gas for each kilogram of fine dry ash, equivalent to an energy potential of 118 kJ.  相似文献   
23.
Levels of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) in both air and soil samples were measured at three different sites in Italy, in proximity to three municipal solid waste incinerators (MSWIs) to determine baseline contamination and the contributory role of incinerator emissions. At the first site, located in an agricultural, cattle-breeding, typically flattish area of the Po Valley, the dioxin concentrations had already been measured before the start-up of the new MSWI. These dioxin concentrations were then again measured after two years of continual operation of the incinerator. Despite the presence of the plant, the PCDD/Fs concentrations appear not to have been affected and were found to be in a range of 22-125 fg I-TEQ m(-3) in the air samples and 0.7-1.5 pg I-TEQ g(-1) in the soil samples. The second site is located in an industrial district of the Veneto Region, in the surroundings of an old MSWI that is not equipped with Best Available Technology (BAT) dioxin removal system. The PCDD/Fs concentrations in the air samples were between 144 and 337 fg I-TEQ m(-3). This is a typical range of values for industrial areas, while the soil samples showed contamination levels between 1.1 and 1.4 pg I-TEQ g(-1). The third site lies in the Adige Valley, near a MSWI that has been equipped with BAT for flue gas cleaning. The observed values ranged from 10 to 67 fg I-TEQ m(-3) for the air samples and 0.08-1.2 pg I-TEQ g(-1) for the soil samples. The contributory factors of the varying characteristics of the different areas together with the types of technology adopted at each MSWI plant are discussed. The PCDD/Fs levels are subsequently compared with established values from previous studies.  相似文献   
24.
The flux and mass balance of PCDD/F in a MSW incineration full scale plant   总被引:1,自引:0,他引:1  
PCDD/F are one of the most significant environmental concerns of municipal solid waste disposal through incineration processes. With the main purpose of evaluating their presence along the flue gas line and establishing a mass balance over the whole system, an extensive research study was performed on a full scale plant. Present paper reports the main results obtained, with particular reference to the PCDD/F concentration profiles and mass balance in the post-furnace region. where significant formation of these compounds might take place. PCDD/F mass fluxes evaluated in all the residues arising from the process are also reported.  相似文献   
25.
Net primary production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approximately 5600 global data points with observed mean annual NPP, land cover class, precipitation, and temperature were compiled. Precipitation was better correlated with NPP than temperature, and it explained much more of the variability in mean annual NPP for grass- or shrub-dominated systems (r2 = 0.68) than for tree-dominated systems (r2 = 0.39). For a given precipitation level, tree-dominated systems had significantly higher NPP (approximately 100-150 g C m(-2) yr(-1)) than non-tree-dominated systems. Consequently, previous empirical models developed to predict NPP based on precipitation and temperature (e.g., the Miami model) tended to overestimate NPP for non-tree-dominated systems. Our new model developed at the National Center for Ecological Analysis and Synthesis (the NCEAS model) predicts NPP for tree-dominated systems based on precipitation and temperature; but for non-tree-dominated systems NPP is solely a function of precipitation because including a temperature function increased model error for these systems. Lower NPP in non-tree-dominated systems is likely related to decreased water and nutrient use efficiency and higher nutrient loss rates from more frequent fire disturbances. Late 20th century aboveground and total NPP for global potential native vegetation using the NCEAS model are estimated to be approximately 28 Pg and approximately 46 Pg C/yr, respectively. The NCEAS model estimated an approximately 13% increase in global total NPP for potential vegetation from 1901 to 2000 based on changing precipitation and temperature patterns.  相似文献   
26.
Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. The study objective was to assess the ability of commercially available enhanced-efficiency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-efficiency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-efficiency fertilizers significantly reduced growing-season N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had significantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. The N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having significantly lower losses. Grain production was not reduced by the use of alternative N sources. This work shows that enhanced-efficiency N fertilizers can potentially reduce N2O-N emissions without affecting yields from irrigated NT corn systems in the semiarid central Great Plains.  相似文献   
27.
Although the 2Rs (reduce and reuse) are considered high-priority approaches, there has not been enough quantitative research on effective 2R management. The purpose of this paper is to provide information obtained through the International Workshop in Kyoto, Japan, on 11–13 November 2015, which included invited experts and researchers in several countries who were in charge of 3R policies, and an additional review of 245 previous studies. It was found that, regarding policy development, the decoupling between environmental pressures and economy growth was recognized as an essential step towards a sustainable society. 3R and resource management policies, including waste prevention, will play a crucial role. Approaches using material/substance flow analyses have become sophisticated enough to describe the fate of resources and/or hazardous substances based on human activity and the environment, including the final sink. Life-cycle assessment has also been developed to evaluate waste prevention activities. Regarding target products for waste prevention, food loss is one of the waste fractions with the highest priority because its countermeasures have significant upstream and downstream effects. Persistent organic pollutants and hazardous compounds should also be taken into account in the situation where recycling activities are globally widespread for the promotion of a material-cycling society.  相似文献   
28.
This paper reports the main outcome of research to compare and assess the merits of alternative strategies for energy recovery from municipal solid waste downstream of material recovery for an Italian province. Strategies analysed are based on well-established combustion technologies available at the commercial scale in the Italian market in comparison with an innovative but not yet proven option of refuse derived fuel gasification and subsequent co-combustion of syngas in a combined cycle power plant. The comparison is made using mass and energy balances, environmental assessment and economic analysis. From an energetic point of view, the best strategy is the one based on the refuse derived fuel gasification, which, on the contrary, does not show interesting environmental results. In this perspective, the best results are from strategies based on a dedicated plant, particularly when unsorted residual waste collected downstream of material recovery is used. Finally, from an economic point of view, the strategy with gasification allows the highest revenues from the sale of energy.  相似文献   
29.
The paper reports on global release and mass partitioning in the flux of residues of PCDD/Fs, evaluated with dedicated field campaigns at a municipal solid waste incineration plant during normal and transient operation. Results are compared with those obtained in other installations equipped with furnaces, energy recovery options and flue gas treatment technologies representative of most of the European incineration plants currently in operation. Levels of the pollutants of interest were determined in all the solid, liquid and gaseous residues produced by every single facility, and the results analysed in terms of the effects arising from the fed waste and the configuration of the plant. PCDD/Fs total release between 1.5 and 45 microg I-TEQ per ton of burned waste was evaluated, with lower values resulting from the adoption of catalytic conversion process for flue gas treatment. Most of the mass flux emitted is associated with solid residues deriving from activated carbon PCCD/F dry removal options, with significant contributions also from fly ash produced by particulate removal devices located immediately downstream the boiler and from scrubber blowdowns treatment sludge. During transient operating conditions the dioxin total release may increase by 50% with comparison to steady-state functioning.  相似文献   
30.
Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N20 emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, >200 g CO2e-C x m(-2) x yr(-1) for biomass conversion to ethanol, and >400 g CO2e-C x m(-2) x yr(-1) for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by approximately 40%, reed canarygrass by approximately 85%, and switchgrass and hybrid poplar by approximately 115%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号