首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
综合类   5篇
基础理论   4篇
污染及防治   3篇
社会与环境   3篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有15条查询结果,搜索用时 78 毫秒
11.
Regional Environmental Change - This paper explores the relationship between specific household traits (region of residence, head of household occupation, financial diversity, female level of...  相似文献   
12.
Environmental Geochemistry and Health - This study focuses on the geochemical features of the presently discharging thermal and cold springs and on paleofluids from the upstream portion of the Reno...  相似文献   
13.
14.
Up to 1980s, the most used preservative for herbaria specimens was HgCl2, sublimating at ambient air conditions; ionic Hg then reduces to Hg0 (gaseous elemental mercury, GEM) and diffuses throughout poor ventilated environments. High GEM levels may indeed persist for decades, representing a health hazard. In this study, we present new GEM data from the Central Italian Herbarium and Tropical Herbarium Studies Centre of the University of Florence (Italy). These herbaria host one of the largest collection of plants in the world. Here, HgCl2 was documented as plant preservative up to the 1920s. GEM surveys were conducted in July 2013 and July and December 2017, to account for temporal and seasonal variations.Herbaria show GEM concentrations well above those of external locations, with peak levels within specimen storage cabinets, exceeding 50,000?ng/m3. GEM concentrations up to ~ 7800?ng/m3 were observed where the most ancient collections are stored and no ventilation systems were active. On the contrary, lower GEM concentrations were observed at the first floor. Here, lower and more homogeneously distributed GEM concentrations were measured in 2017 than in 2013 since the air-conditioning system was updated in early 2017.GEM concentrations were similar to other herbaria worldwide and lower than Italian permissible exposure limit of 20,000?ng/m3 (8-hr working day). Our results indicate that after a century from the latest HgCl2 treatment GEM concentrations are still high, i.e., the treatment itself is almost irreversible. Air conditioning and renewing is probably the less expensive and more effective method for GEM lowering.  相似文献   
15.
The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site’s heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site’s mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号