首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   33篇
  国内免费   15篇
安全科学   46篇
废物处理   29篇
环保管理   232篇
综合类   66篇
基础理论   202篇
环境理论   3篇
污染及防治   155篇
评价与监测   63篇
社会与环境   25篇
灾害及防治   6篇
  2024年   2篇
  2023年   7篇
  2022年   3篇
  2021年   11篇
  2020年   10篇
  2019年   13篇
  2018年   17篇
  2017年   28篇
  2016年   26篇
  2015年   24篇
  2014年   32篇
  2013年   68篇
  2012年   41篇
  2011年   49篇
  2010年   39篇
  2009年   47篇
  2008年   42篇
  2007年   38篇
  2006年   46篇
  2005年   39篇
  2004年   32篇
  2003年   25篇
  2002年   34篇
  2001年   14篇
  2000年   10篇
  1999年   14篇
  1998年   12篇
  1997年   9篇
  1996年   9篇
  1995年   8篇
  1994年   13篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1985年   5篇
  1984年   2篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1968年   1篇
排序方式: 共有827条查询结果,搜索用时 321 毫秒
31.
Declines in salmon stocks and general watershed health in Washington State, USA, have led to an increase in stream restoration and enhancement projects initiated throughout the state. The increasing number of projects has also raised questions regarding the monitoring of these efforts. Project managers receiving hydraulic project approvals (HPAs) were surveyed to determine whether monitoring was taking place on their projects. About half the project managers surveyed reported the collection of baseline data and the use of biological, physical, chemical, or other water quality measures for their projects. Of those who reported collection of monitoring data, only 18% indicated that monitoring was required. Respondents were also asked to rank the importance of various project goals on a Likert scale. Project managers with projects focusing on “engineering” goals (e.g., roadbed stabilization) were less likely than other project managers to collect baseline monitoring data. Project managers with projects focusing on “restoration/ecological” or “fisheries” goals were more likely than other project managers to collect monitoring measures. Although monitoring appears to be taking place in slightly more than half of the projects surveyed, the nature of the data collected varies widely across projects, and in most cases the monitoring effort is voluntary. This suggests that project sponsors, funders, and managers must consider the issues involved in requiring appropriate monitoring, establishing standardized monitoring guidelines, the time frames in which to monitor, providing other incentives for conducting monitoring, and ensuring adequate funding for monitoring efforts.  相似文献   
32.
Landscape approaches attempt to achieve balance amongst multiple goals over long time periods and to adapt to changing conditions. We review project reports and the literature on integrated landscape approaches, and found a lack of documented studies of their long-term effectiveness. The combination of multiple and potentially changing goals presents problems for the conventional measures of impact. We propose more critical use of theories of change and measures of process and progress to complement the conventional impact assessments. Theories of change make the links between project deliverables, outputs, outcomes, and impacts explicit, and allow a full exploration of the landscape context. Landscape approaches are long-term engagements, but short-term process metrics are needed to confirm that progress is being made in negotiation of goals, meaningful stakeholder engagement, existence of connections to policy processes, and effectiveness of governance. Long-term impact metrics are needed to assess progress on achieving landscapes that deliver multiple societal benefits, including conservation, production, and livelihood benefits. Generic criteria for process are proposed, but impact metrics will be highly situation specific and must be derived from an effective process and a credible theory of change.  相似文献   
33.
Accurate discharge simulation is one of the most common objectives of hydrological modeling studies. However, a good simulation of discharge is not necessarily the result of a realistic simulation of hydrological processes within the catchment. We propose an evaluation framework that considers both discharge and water balance components as evaluation criteria for calibration of the Soil and Water Assessment Tool (SWAT). In this study, we integrated average annual values of surface runoff, groundwater flow, and evapotranspiration in the model evaluation procedure to constrain the selection of good model runs for the Little River Experimental Watershed in Georgia, United States. For evaluating water balance and discharge dynamics, the Nash‐Sutcliffe efficiency (NSE) and percent bias (PBIAS) were used. In addition, the ratio of root mean square error and standard deviation of measured data (RSR) was calculated for individual segments of the flow duration curve to identify the best model runs in terms of discharge magnitude. Our results indicate that good statistics for discharge do not guarantee realistic simulations of individual water balance components. Therefore, we recommend constraining the ranges of water balance components to achieve a more realistic simulation of the entire hydrological system, even if tradeoffs between good statistics for discharge simulations and reasonable amounts of the water balance components are unavoidable. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
34.
The ability to accurately simulate flow and nutrient removal in treatment wetlands within an agricultural, watershed‐scale model is needed to develop effective plans for meeting nutrient reduction goals associated with protection of drinking water supplies and reduction of the Gulf of Mexico hypoxic zone. The objectives of this study were to incorporate new equations for wetland hydrology and nutrient removal in Soil and Water Assessment Tool (SWAT), compare model performance using original and improved equations, and evaluate the ramifications of errors in watershed and tile drain simulation on prediction of NO3‐N dynamics in wetlands. The modified equations produced Nash‐Sutcliffe Efficiency values of 0.88 to 0.99 for daily NO3‐N load predictions, and percent bias values generally less than 6%. However, statistical improvement over the original equations was marginal and both old and new equations provided accurate simulations. The new equations reduce the model's dependence on detailed monitoring data and hydrologic calibration. Additionally, the modified equations increase SWAT's versatility by incorporating a weir equation and an irreducible nutrient concentration and temperature coefficient. Model improvements enhance the utility of SWAT for simulating flow and nutrients in wetlands and other impoundments, although performance is limited by the accuracy of inflow and NO3‐N predictions from the contributing watershed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
35.
Recreational uses of unsurfaced trails inevitably result in their degradation, with the type and extent of resource impact influenced by factors such as soil texture, topography, climate, trail design and maintenance, and type and amount of use. Of particular concern, the loss of soil through erosion is generally considered a significant and irreversible form of trail impact. This research investigated the influence of several use-related, environmental, and managerial factors on soil loss on recreational trails and roads at Big South Fork National River and Recreation Area, a unit of the U.S. National Park Service. Regression modeling revealed that trail position, trail slope alignment angle, grade, water drainage, and type of use are significant determinants of soil loss. The introduction of individual and groups of variables into a series of regression models provides improved understanding and insights regarding the relative influence of these variables, informing the selection of more effective trail management actions. Study results suggest that trail erosion can be minimized by avoiding “fall-line” alignments, steep grades, and valley-bottom alignments near streams, installing and maintaining adequate densities of tread drainage features, applying gravel to harden treads, and reducing horse and all-terrain vehicle use or restricting them to more resistant routes.  相似文献   
36.
Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha−1 and more than doubled to 0.95 kg ha−1 during the summer campaign.  相似文献   
37.
Opperman, Jeffrey J., Ryan Luster, Bruce A. McKenney, Michael Roberts, and Amanda Wrona Meadows, 2010. Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale. Journal of the American Water Resources Association (JAWRA) 46(2):211-226. DOI: 10.1111/j.1752-1688.2010.00426.x Abstract: This paper proposes a conceptual model that captures key attributes of ecologically functional floodplains, encompassing three basic elements: (1) hydrologic connectivity between the river and the floodplain, (2) a variable hydrograph that reflects seasonal precipitation patterns and retains a range of both high and low flow events, and (3) sufficient spatial scale to encompass dynamic processes and for floodplain benefits to accrue to a meaningful level. Although floodplains support high levels of biodiversity and some of the most productive ecosystems on Earth, they are also among the most converted and threatened ecosystems and therefore have recently become the focus of conservation and restoration programs across the United States and globally. These efforts seek to conserve or restore complex, highly variable ecosystems and often must simultaneously address both land and water management. Thus, such efforts must overcome considerable scientific, technical, and socioeconomic challenges. In addition to proposing a scientific conceptual model, this paper also includes three case studies that illustrate methods for addressing these technical and socioeconomic challenges within projects that seek to promote ecologically functional floodplains through river-floodplain reconnection and/or restoration of key components of hydrological variability.  相似文献   
38.

Background aim and scope  

Though the tidal Anacostia River, a highly polluted riverine system, has been well characterized with regard to contaminants, its overall resident bacterial populations have remained largely unknown. Improving the health of this system will rely upon enhanced understanding of the diversity and functions of these communities. Bacterial DNA was extracted from archived (AR, year 2000) and fresh sediments (RE, year 2006) collected from various locations within the Anacostia River. Using a combination of metabolic and molecular techniques, community snapshots of sediment bacterial diversity and activity were produced.  相似文献   
39.
The interpretation of thermodenuder (TD) data often relies on the assumption that thermodynamic equilibrium is reached inside the instrument. We modeled the evaporation of three organic aerosol types (adipic acid, α-pinene SOA and aged OA) inside a thermodenuder with a mass transfer model, and calculated equilibration time scales for these systems at realistic conditions. The equilibrium times varied from less than a second to several hours, decreasing with increasing aerosol concentrations, decreasing particle sizes, decreasing volatilities and increasing mass accommodation coefficients. The results indicate that generally TDs measure particle evaporation rates rather than equilibria, and time-dependent modeling of the evaporation is usually needed to interpret the data. Measurements at varying residence times and temperatures, on the other hand, are desirable to investigate the equilibration of the studied aerosol and decouple the kinetic effects from the effects caused by the thermodynamic properties of the aerosol. Organic aerosol is likely to be further from equilibrium under typical field conditions compared with laboratory data. When determining the aerosol properties from TD data, assuming incorrectly equilibrium results in under-prediction of the vaporization enthalpy of the evaporating species. Similar under-estimation is predicted if multicomponent aerosols are approximated with single-component properties.  相似文献   
40.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号