首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   11篇
  国内免费   2篇
安全科学   28篇
废物处理   26篇
环保管理   74篇
综合类   50篇
基础理论   118篇
污染及防治   103篇
评价与监测   14篇
社会与环境   6篇
灾害及防治   4篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   10篇
  2016年   13篇
  2015年   13篇
  2014年   10篇
  2013年   25篇
  2012年   14篇
  2011年   15篇
  2010年   10篇
  2009年   17篇
  2008年   17篇
  2007年   18篇
  2006年   22篇
  2005年   14篇
  2004年   14篇
  2003年   8篇
  2002年   13篇
  2001年   9篇
  2000年   15篇
  1999年   15篇
  1998年   10篇
  1997年   14篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1978年   3篇
  1977年   4篇
  1975年   3篇
  1973年   2篇
  1967年   2篇
  1964年   2篇
  1955年   1篇
  1954年   1篇
  1949年   1篇
排序方式: 共有423条查询结果,搜索用时 46 毫秒
121.
122.
Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in “land use” regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation.  相似文献   
123.
Six types of starch-polyethylene degradable plastics were evaluated for the release of water-soluble toxic compounds under accelerated degradation conditions. A plastic strip (2.5×15.2 cm) was placed in a 250-ml Erlenmeyer flask with 100 ml of ASTM type I water with or without trace element solutions and shaken at 65°C and 110 rpm for 20 weeks in replicates of two. High temperature was used to accelerate the oxidative degradation of polyethylene. Plastic degradation was measured by loss of tensile strength, percentage elongation, strain energy, and weight-average molecular weight. The most rapid period of polyethylene thermal degradation was complete for most materials by day 28. Ten-milliliter aqueous samples were removed from each flask at days 1, 7, 28, 56, 84, and 140 (water volumes were maintained at 100 ml with fresh type I water), filtered through glass filters, then evaluated by using the Microtox Toxicity Analyzer (Microbics Corporation, Carlsbad, CA). No water-soluble toxic compounds were detected during the period of rapid film degradation. Toxicity was observed at day 28 for one film and at day 84 for all films, which could possibly correlate with the release of small oxidative compounds such as formaldehyde and acetaldehyde. Because of the sensitivity of this assay, positive results must be confirmed by otherin vitro studies.Journal Paper No. J-14851 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Projects No. 2889 and 0178.  相似文献   
124.
ABSTRACT: The effects of energy development on the water resources of the Colorado River and Great Basin regions is expected to be substantial. Complex physical, economic and institutional interactions may be expected. Most research on these impacts appears single purpose, fragmented, uncoordinated, and often inaccessible to potential users - particularly those with responsibility for energy/water policy and program decisions. A comprehensive, integrative framework for assessing alternative water allocation decisions is outlined, taking a heuristic decision making model for evaluating impacts on maximization of gross (or net) regional product, and regional social welfare, and for assessing the region's contribution to national objectives. The suggested model provides a structure for application and integration of data of various kinds to a range of situations arising from possible impacts from energy proposals. The focus is on water and energy relationships but the model may provide a framework for comprehensive analysis of a variety of environmental actions and resulting system perturbations and effects.  相似文献   
125.
State-and-transition models are increasingly being used to guide rangeland management. These models provide a relatively simple, management-oriented way to classify land condition (state) and to describe the factors that might cause a shift to another state (a transition). There are many formulations of state-and-transition models in the literature. The version we endorse does not adhere to any particular generalities about ecosystem dynamics, but it includes consideration of several kinds of dynamics and management response to them. In contrast to previous uses of state-and-transition models, we propose that models can, at present, be most effectively used to specify and qualitatively compare the relative benefits and potential risks of different management actions (e.g., fire and grazing) and other factors (e.g., invasive species and climate change) on specified areas of land. High spatial and temporal variability and complex interactions preclude the meaningful use of general quantitative models. Forecasts can be made on a case-by-case basis by interpreting qualitative and quantitative indicators, historical data, and spatially structured monitoring data based on conceptual models. We illustrate how science- based conceptual models are created using several rangeland examples that vary in complexity. In doing so, we illustrate the implications of designating plant communities and states in models, accounting for varying scales of pattern in vegetation and soils, interpreting the presence of plant communities on different soils and dealing with our uncertainty about how those communities were assembled and how they will change in the future. We conclude with observations about how models have helped to improve management decision-making.  相似文献   
126.
Few studies have examined long-term ecological effects of sustained low-level nutrient enhancement on wetland biota. To determine sustained effects of phosphorus (P) addition on Everglades marshes we added P at low levels (5, 15, and 30 microg L(-1) above ambient) for 5 yr to triplicate 100-m flow-through channels in pristine marsh. A cascade of ecological responses occurred in similar sequence among treatments. Although the rate of change increased with dosing level, treatments converged to similar enriched endpoints, characterized most notably by a doubling of plant biomass and elimination of native, calcareous periphyton mats. The full sequence of biological changes occurred without an increase in water total P concentration, which remained near ambient levels until Year 5. This study indicates that Everglades marshes have a near-zero assimilative capacity for P without a state change, that ecosystem responses to enrichment accumulate over time, and that downstream P transport mainly occurs through biota rather than the water column.  相似文献   
127.
ABSTRACT: Water is potentially one of the most affected resources as climate changes. Though knowledge and understanding has steadily evolved about the nature and extent of many of the physical effects of possible climate change on water resources, much less is known about the economic responses and impacts that may emerge. Methods and results are presented that examine and quantify many of the important economic consequences of possible climate change on U.S. water resources. At the core of the assessment is the simulation of multiple climate change scenarios in economic models of four watersheds. These Water Allocation and Impact Models (Water‐AIM) simulate the effects of modeled runoff changes under various climate change scenarios on the spatial and temporal dimensions of water use, supply, and storage and on the magnitude and distribution of economic consequences. One of the key aspects and contributions of this approach is the capability of capturing economic response and adaptation behavior of water users to changes in water scarcity. By reflecting changes in the relative scarcity (and value) of water, users respond by changing their patterns of water use, intertemporal storage in reservoirs, and changes in the pricing of water. The estimates of economic welfare change that emerge from the Water‐AIM models are considered lower‐bound estimates owing to the conservative nature of the model formulation and key assumptions. The results from the Water‐AIM models form the basis for extrapolating impacts to the national level. Differences in the impacts across the regional models are carried through to the national assessment by matching the modeled basins with basins with similar geographical, climatic, and water use characteristics that have not been modeled and by using hydro‐logic data across all U.S. water resources regions. The results from the national analysis show that impacts are borne to a great extent by nonconsumptive users that depend on river flows, which rise and fall with precipitation, and by agricultural users, primarily in the western United States, that use a large share of available water in relatively low‐valued uses. Water used for municipal and industrial purposes is largely spared from reduced availability because of its relatively high marginal value. In some cases water quality concerns rise, and additional investments may be required to continue to meet established guidelines.  相似文献   
128.
This paper presents a summary of the comparative analysis of two polychlorinated biphenyl (PCB) detoxification technologies that were evaluated in pilot scale equipment. Two treatment technologies, base catalyzed decomposition (BCD) and gas phase chemical reduction, treated materials removed from the PCB landfill in Warren County, North Carolina. There has been a remarkable amount of public opposition to this landfill. Very stringent performance criteria for soil cleanup of PCBs and dioxins and for air emissions from the treatment equipment were used, along with a number of other factors to evaluate the two technologies. The BCD technology was selected as the best performing one for this project.  相似文献   
129.
ABSTRACT: Coastal central California is a region that has never been the subject of tree-ring studies. New tree-ring chronologies developed from cores of big cone spruce (Pseudotusuga macrocarpa (Torr.) Mayr.) growing in the Transverse Ranges of central Santa Barbara county were used to reconstruct precipitation fluctuations for this region. To verify the new reconstructions, calibration with recorded rainfall using cross-validation, comparison with other reconstructions, and documentary evidence from historical sources were utilized. The precipitation reconstructions show that there have not been fluctuations in mean precipitation on time scales longer than 30 years, but there have been major fluctuations in precipitation variability including changes in the frequency of extremes and rare events that have not occurred in the modern record.  相似文献   
130.
ABSTRACT: The Cheat River of West Virginia is impaired by acid mine drainage (AMD). Fifty‐five of its river segments were placed on the 303(d) list, which required calculations of total maximum daily load (TMDL) to meet the water quality criteria for pH, total iron, aluminum, manganese, and zinc. An existing watershed model was enhanced to simulate AMD as nonpoint source load. The model divided a watershed into a network of catchments and river segments. Each catchment was divided into soil layers, which could contain pyrite, calcite and other minerals. A kinetic expression was used to simulate pyrite oxidation as a function of oxygen in the soil voids. Oxygen in the soil voids was consumed by pyrite oxidation and replenished by earth breathing. The by‐products of pyrite oxidation were calculated according to its mass action equations. Chemical equilibrium was used to account for the speciation of ferrous and ferric irons and precipitation of metal hydroxides. Simulated hydrology and water quality were compared to available data. The USEPA used the calibrated model to calculate the TMDLs in the Cheat River Watershed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号