首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   6篇
  国内免费   3篇
安全科学   15篇
废物处理   1篇
环保管理   29篇
综合类   17篇
基础理论   41篇
污染及防治   32篇
评价与监测   10篇
社会与环境   7篇
灾害及防治   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   4篇
  2018年   6篇
  2017年   6篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2012年   9篇
  2011年   7篇
  2010年   8篇
  2009年   19篇
  2008年   12篇
  2007年   10篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有153条查询结果,搜索用时 234 毫秒
151.
Sharks are apex predators, and their evolutionary success is in part due to an impressive array of sensory systems, including vision. The eyes of sharks are well developed and function over a wide range of light levels. However, whilst close relatives of the sharks—the rays and chimaeras—are known to have the potential for colour vision, an evolutionary trait thought to provide distinct survival advantages, evidence for colour vision in sharks remains equivocal. Using single-receptor microspectrophotometry, we measured the absorbance spectra of visual pigments located in the retinal photoreceptors of 17 species of shark. We show that, while the spectral tuning of the rod (wavelength of maximum absorbance, λmax 484–518 nm) and cone (λmax 532–561 nm) visual pigments varies between species, each shark has only a single long-wavelength-sensitive cone type. This suggests that sharks may be cone monochromats and, therefore, potentially colour blind. Whilst cone monochromacy on land is rare, it may be a common strategy in the marine environment: many aquatic mammals (whales, dolphins and seals) also possess only a single, green-sensitive cone type. It appears that both sharks and marine mammals may have arrived at the same visual design by convergent evolution. The spectral tuning of the rod and cone pigments of sharks is also discussed in relation to their visual ecology.  相似文献   
152.
BACKGROUND: Halogenated compounds in the atmosphere are of great environmental concern due to their demonstrated negative effect on atmospheric chemistry and climate. Detailed knowledge of the emission budgets of halogenated compounds has to be gained to understand better their specific impact on ozone chemistry and the climate. Such data are also highly relevant to guide policy decisions in connexion with international agreements about protection of the ozone layer. In selected cases, the relevance of specific emission sources for certain compounds were unclear. In this study we present new and comprehensive evidence regarding the existence and relevance of a volcanic contribution of chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), halons (bromine containing halo(hydro)carbons), and fully fluorinated compounds (e.g. CF4 and SF6) to the atmospheric budget. METHODS: In order to obtain new evidence of a volcanic origin of these compounds, we collected repeatedly, during four field campaigns covering a period of two years, gases from fumaroles discharging over a wide range of temperatures at the Nicaraguan subduction zone volcanoes Momotombo, Cerro Negro and Mombacho, and analysed them with very sensitive GC/MS systems. RESULTS AND DISCUSSION: In most fumarolic samples certain CFCs, HFCs, HCFCs, halons, and the fully fluorinated compounds CF4 and SF6 were present above detection limits. However, these compounds occur in the fumarole gases in relative proportions characteristic for ambient air. CONCLUSION: This atmospheric fingerprint can be explained by variable amounts of air entering the porous volcanic edifices and successively being incorporated into the fumarolic gas discharges. Recommendation and Outlook. Our results suggest that the investigated volcanoes do not constitute a significant natural source for CFCs, HFCs, HCFCs, halons, CF4, SF6 and NF3.  相似文献   
153.
Scientists, resource managers, and decision makers increasingly use knowledge coproduction to guide the stewardship of future landscapes under climate change. This process was applied in the California Central Valley (USA) to solve complex conservation problems, where managed wetlands and croplands are flooded between fall and spring to support some of the largest concentrations of shorebirds and waterfowl in the world. We coproduced scenario narratives, spatially explicit flooded waterbird habitat models, data products, and new knowledge about climate adaptation potential. We documented our coproduction process, and using the coproduced models, we determined when and where management actions make a difference and when climate overrides these actions. The outcomes of this process provide lessons learned on how to cocreate usable information and how to increase climate adaptive capacity in a highly managed landscape. Actions to restore wetlands and prioritize their water supply created habitat outcomes resilient to climate change impacts particularly in March, when habitat was most limited; land protection combined with management can increase the ecosystem's resilience to climate change; and uptake and use of this information was influenced by the roles of different stakeholders, rapidly changing water policies, discrepancies in decision-making time frames, and immediate crises of extreme drought. Although a broad stakeholder group contributed knowledge to scenario narratives and model development, to coproduce usable information, data products were tailored to a small set of decision contexts, leading to fewer stakeholder participants over time. A boundary organization convened stakeholders across a large landscape, and early adopters helped build legitimacy. Yet, broadscale use of climate adaptation knowledge depends on state and local policies, engagement with decision makers that have legislative and budgetary authority, and the capacity to fit data products to specific decision needs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号