首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   3篇
  国内免费   9篇
安全科学   5篇
废物处理   10篇
环保管理   36篇
综合类   54篇
基础理论   32篇
污染及防治   94篇
评价与监测   24篇
社会与环境   7篇
灾害及防治   3篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   2篇
  2019年   1篇
  2018年   7篇
  2017年   13篇
  2016年   8篇
  2015年   4篇
  2014年   9篇
  2013年   25篇
  2012年   11篇
  2011年   18篇
  2010年   18篇
  2009年   14篇
  2008年   14篇
  2007年   9篇
  2006年   15篇
  2005年   11篇
  2004年   14篇
  2003年   8篇
  2002年   6篇
  2001年   13篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1973年   1篇
  1956年   2篇
排序方式: 共有265条查询结果,搜索用时 390 毫秒
101.
A laboratory scale two-stage sequencing batch reactor (TSSBR) was used to study the effectiveness of pH as a real-time control parameter in swine wastewater treatment. A Ringlace media was inserted into the A/O (Anoxic/Oxic) reactor for bacteria immobilization. The TSSBR was subjected to three levels of organic loading. The pH and ORP (Oxidation Reduction Potential) patterns obtained were consistent with distinct features, enabling the real-time control strategy to effectively set a flexible aeration time pending on influent concentration, hence resulting in flexible cycle time and HRT (Hydraulic Retention Time) for the system. The real-time process ensured a removal efficiency of over 99% and 95%, respectively, for ammonia and TOC (Total Organic Carbon). For NO3(-)-N and PO4(-3), the run with influent TOC = 4,000 mg/L yielded the most efficient removal of 61% and 95%, respectively. Test results suggest that pH can be a viable tool for on-line real-time control of a biological treatment process.  相似文献   
102.
Ambient halocarbon mixing ratios in 45 Chinese cities   总被引:4,自引:0,他引:4  
During this study 158 whole air samples were collected in 45 Chinese cities in January and February 2001. The spatial distribution of different classes of halocarbons in the Chinese urban atmosphere, including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), Halon-1211, and other chlorinated compounds is presented and discussed. Most of these compounds were enhanced compared to background levels. However, the mean enhancement of CFCs was relatively small, with CFC-12 and CFC-11 increases of 6% (range 1–31%) and 10% (range 2–89%), respectively, with respect to the global background. On the contrary, strongly enhanced levels of CFC replacement compounds and halogenated compounds used as solvents were measured. The average Halon-1211 concentration exceeded the background of 4.3 pptv by 75% and was higher than 10 pptv in several cities. Methyl chloride mixing ratios were also strongly elevated (78% higher than background levels), which is likely related to the widespread use of coal and biofuel in China.  相似文献   
103.
Lai CH  Lo SL  Chiang HL 《Chemosphere》2000,41(8):1249-1255
This study was conducted to develop a heating process for coating hydrated iron oxide on the sand surface to utilise the adsorbent properties of the coating and the filtration properties of the sand. BET and scanning electron microscope (SEM) analyses were used to investigate the surface properties of the coated layer. An energy dispersive X-ray (EDAX) technique of analysis was used for characterising metal adsorption sites on the iron-coated sand surface. The results indicated that the iron-coated sand had more micropores and higher specific surface area because of the attachment of iron oxide. Copper ions could penetrate into the micropores and mesopores of iron oxide on sand surface, and the regeneration of the iron-coated sand could be achieved by soaking with pH = 3.0 acid solution. Besides, the results of EDAX analysis showed that copper ions were chemisorbed on the surface of iron-coated sand. Results of the study developed an innovative technology for coating iron oxide on sand surface for the treatment of heavy metal in water.  相似文献   
104.
Food waste is the largest constituent of municipal solid waste in Hong Kong, but food waste recycling is still in its infancy. With the imminent saturation of all landfill sites by 2020, multiple technologies are needed to boost up the food waste recycling rate in Hong Kong. Conversion of food waste into animal feeds is prevalent in Japan, South Korea, and Taiwan, treating over 40 % of their recycled food waste. This direction is worth exploring in Hong Kong once concerns over food safety are resolved. Fortunately, while feeding food waste to pigs and chickens poses threats to public health, feeding it to fish is considered low risk. In order to examine the feasibility of converting food waste into fish feed in Hong Kong, this paper investigates the market demand, technical viability, feed quality, regulatory hurdles, and potential contribution. The results show that a significant amount of food waste can be recycled by converting it into fish feed due to the enormous demand from feed factories in mainland China. Two conversion technologies, heat drying and black soldier fly bioconversion, are studied extensively. Black soldier fly bioconversion is preferable because the end-product, insect powder, is anticipated to gain import approval from mainland China. The authors suggest further research efforts to speed up its application for food waste recycling in urban cities.  相似文献   
105.
This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 μg/L).  相似文献   
106.
Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3–8.6 kcal mol?1, the reaction order was in the range of 0.6–0.8, and the frequency factor was 0.01–0.24 min?1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137–173 mg g?1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62–78%, paraffins were 21–37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.  相似文献   
107.
When a domestic wastewater treatment plant (DWWTP) is put into operation, variations of the wastewater quantity and quality must be predicted using mathematical models to assist in operating the wastewater treatment plant such that the treated effluent will be controlled and meet discharge standards. In this study, three types of gray model (GM) including GM (1, N), GM (1, 1), and rolling GM (1, 1) were used to predict the effluent biochemical oxygen demand (BOD), chemical oxygen demand (COD), and suspended solids (SS) from the DWWTP of conventional activated sludge process. The predicted results were compared with those obtained using backpropagation neural network (BPNN). The simulation results indicated that the minimum mean absolute percentage errors of 43.79%, 16.21%, and 30.11% for BOD, COD, and SS could be achieved. The fitness was higher when using BPNN for prediction of BOD (34.77%), but it required a large quantity of data for constructing model. Contrarily, GM only required a small amount of data (at least four data) and the prediction results were analogous to those of BPNN, even lower than that of BPNN when predicting COD (16.21%) and SS (30.11%). According to the prediction, results suggested that GM could predict the domestic effluent variation when its effluent data were insufficient.  相似文献   
108.
The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat dairy manure for solubilization of nutrients and organic matters. This study investigated the effectiveness of the MW/H(2)O(2)-AOP under a continuous mode of operation, and compared the results to those of batch operations. The main factors affecting solubilization by the MW/H(2)O(2)-AOP were heating temperature and hydrogen peroxide dosage. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) increased with an increase of microwave (MW) heating temperature; very high concentrations were obtained at 90°C. Insignificant amounts of ammonia and reducing sugars were released in all runs. An acidic pH condition was required for phosphorus solubilisation from dairy manure. The best yield was obtained at 90°C with an acid dosage of 1.0 %; about 92 % of total phosphorus and 90 % of total chemical oxygen demand were in the soluble forms. The MW/H(2)O(2)-AOP operated in a continuous operation mode showed pronounced synergistic effects between hydrogen peroxide and microwave irradiation when compared to a batch system under similar operating conditions, resulting in much better yields.  相似文献   
109.
To investigate the spatial distribution and diurnal variation of the chemical composition of PM2.5 pollution in an industrial city of southern Taiwan, 12-h PM2.5 was diurnally continuously collected simultaneously at the Kaoping Air Quality Zone (KAQZ) during one highly PM2.5-polluted episode. Water-soluble ions, metallic elements, carbonaceous contents, dicarboxylic acids, and anhydrosugars were analyzed to characterize the chemical fingerprint of PM2.5. Backward trajectory simulation and chemical mass balance (CMB) receptor modeling were applied to identify the potential sources of PM2.5 and their contributions. It showed that Chaozhou (rural area) accompanying the highest SORs and NORs suffered from the most severe PM2.5 pollution during the episode. Sulfate (SO42−) was probably formed by the atmospheric chemical reaction in the daytime, while NO3− processed at nighttime at the KAQZ. A homogeneous formation of NO3− occurred at Chaozhou. The concentrations of Zn, Pb, Fe, Cu, V, and Al, mainly emitted from anthropogenic sources, increased significantly at the KAQZ. The highest OC, SOC/OC, and DA/OCs at Daliao (industrial area) were attributed to the transformation of primary VOCs to secondary OC via photo-oxidation during the episode. Oxalic acid was mainly produced through photochemical reactions since a high correlation between oxalic acid and Ca2+ was observed at Nanzi (urban area) and Daliao during the episode. During the episode, PM2.5 mostly originated from local primary or secondary aerosol than long-range overseas transport. The dominant source was anthropogenic emissions, accounting for 67.1% and 70.4% of PM2.5 at Nanzi and Daliao, respectively. At Chaozhou, the contribution of anthropogenic emissions was the lowest (42.4%), but secondary aerosols had the highest contribution of 38.3% of PM2.5 among the three areas during the episode.  相似文献   
110.
Fan C  Tsui L  Liao MC 《Chemosphere》2011,82(2):229-236
The purpose of this study is to investigate parathion degradation by Fenton process in neutral environment. The initial parathion concentration for all the degradation experiments was 20 ppm. For hydrogen ion effect on Fenton degradation, the pH varied from 2 to 8 at the [H2O2] to [Fe2+] ratio of 2-2 mM, and the result showed pH 3 as the most effective environment for parathion degradation by Fenton process. Apparent degradation was also observed at pH 7. The subsequent analysis for parathion degradation was conducted at pH 7 because most environmental parathion exists in the neutral environment. Comparing the parathion degradation results at various Fenton dosages revealed that at Fe2+ concentrations of 0.5, 1.0 and 1.5 mM, the Fenton reagent ratio ([H2O2]/[Fe2+]) for best-removing performance were found as 4, 3, and 2, resulting in the removal efficiencies of 19%, 48% and 36%, respectively. Further increase in Fe2+ concentration did not cause any increase of the optimum Fenton reagent ratio for the best parathion removal. The result from LC-MS also indicated that hydroxyl radicals might attack the PS double bond, the single bonds connecting nitro-group, nitrophenol, or the single bond within ethyl groups of parathion molecules forming paraoxons, nitrophenols, nitrate/nitrite, thiophosphates, and other smaller molecules. Lastly, the parathion degradation by Fenton process at the presence of humic acids was investigated, and the results showed that the presence of 10 mg L−1 of humic acids in the aqueous solution enhanced the parathion removal by Fenton process twice as much as that without the presence of humic acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号