首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   1篇
  国内免费   3篇
安全科学   3篇
废物处理   7篇
环保管理   7篇
综合类   14篇
基础理论   32篇
污染及防治   68篇
评价与监测   34篇
社会与环境   11篇
灾害及防治   1篇
  2023年   1篇
  2022年   14篇
  2021年   28篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   7篇
  2013年   17篇
  2012年   6篇
  2011年   14篇
  2010年   8篇
  2009年   2篇
  2008年   7篇
  2007年   7篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1964年   1篇
  1963年   2篇
  1962年   1篇
  1961年   1篇
  1959年   2篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
61.
A total of 144 isolates of Pseudomonas spp. (48 each from the Yamuna River water, wastewater irrigated soil and groundwater irrigated soil) were tested for their resistance against certain heavy metals and antibiotics. Minimum inhibitory concentrations (MICs) of Hg2?+?, Cd2?+?, Cu2?+?, Zn2?+?, Ni2?+?, Pb2?+?, Cr3?+? and Cr6?+? for each isolate were also determined. A maximum MIC of 200 ??g/ml for mercury and 3,200 ??g/ml for other metals were observed. The incidences of metal resistance and MICs of metals for Pseudomonas isolates from the Yamuna water and wastewater irrigated soil were significantly different to those of groundwater irrigated soil. A high level of resistance against tetracycline and polymyxin B (81.2%) was observed in river water isolates. However, 87.5% of Pseudomonas isolates from soil irrigated with wastewater showed resistance to sulphadiazine, whereas 79.1% were resistant to both ampicillin and erythromycin. Isolates from soil irrigated with groundwater exhibited less resistance towards heavy metals and antibiotics as compared to those of river water and wastewater irrigated soil. Majority of the Pseudomonas isolates from water and soil exhibited resistance to multiple metals and antibiotics. Resistance was transferable to recipient Escherichia coli AB2200 strains by conjugation. Plasmids were cured with the curing agent ethidium bromide and acridine orange at sub-MIC concentration.  相似文献   
62.
63.
Conjunctive use of saline/non-saline irrigation waters is generally aimed at minimizing yield losses and enhancing flexibility of cropping, without much alteration in farming operations. Recommendation of location-specific suitable conjunctive water use plans requires assessment of their long-term impacts on soil salinization/sodification and crop yield reductions. This is conventionally achieved through long-term field experiments. However such impact evaluations are site specific, expensive and time consuming. Appropriate decision support systems (DSS) can be time-efficient and cost-effective means for such long-term impact evaluations. This study demonstrates the application of one such (indigenously developed) DSS for recommending best conjunctive water use plans for a, rice-wheat growing, salt affected farmer’s field in Gurgaon district of Haryana (India). Before application, the DSS was extensively validated on several farmers and controlled experimental fields in Gurgaon and Karnal districts of Haryana (India). Validation of DSS showed its potential to give realistic estimates of root zone soil salinity (with R = 0.76–0.94; AMRE = 0.03–0.06; RMSPD = 0.51–0.90); sodicity (with R = 0.99; AMRE = 0.02; RMSPD = 0.84) and relative crop yield reductions (AMRE = 0.24), under existing (local) resource management practices. Long term (10 years) root zone salt build ups and associated rice/wheat crop yield reductions, in a salt affected farmer’s field, under varied conjunctive water use scenarios were evaluated with the validated DSS. It was observed that long-term applications of canal (CW) and tube well (TW) waters in a cycle and in 1:1 mixed mode, during Kharif season, predicted higher average root zone salt reductions (2–9%) and lower rice crop yield reductions (4–5%) than the existing practice of 3-CW, 3-TW, 3-CW. Besides this, long-term application of 75% CW mixed with 25% TW, during Rabi season, predicted about 17% lower average root-zone salt reductions than the cyclic applications of (1-CW, 1-TW, 2-CW) and (2-CW, 1-TW, 1-CW, i.e., existing irrigation strategy). However, average wheat crop yield reductions (16–17%) simulated under all these strategies were almost at par. In general, cyclic-conjunctive water use strategies emerged as better options than the blending modes. These results were in complete confirmation with actual long-term conjunctive water use experiments on similar soils. It was thus observed that such pre-validated tools could be efficient means for designing, local resource and target crop yield-specific, appropriate conjunctive water use plans for irrigated agricultural lands.  相似文献   
64.
Traditionally, the identification and characterization of microbial communities in contaminated soil and water has previously been limited to those microorganisms that are culturable. The application of molecular techniques to study microbial populations at contaminated sites without the need for culturing has led to the discovery of unique and previously unrecognized microorganisms as well as complex microbial diversity in contaminated soil and water which shows an exciting opportunity for bioremediation strategies. Nucleic acid extraction from contaminated sites and their subsequent amplification by polymerase chain reaction (PCR) has proved extremely useful in assessing the changes in microbial community structure by several microbial community profiling techniques. This review examines the current application of molecular techniques for the characterization of microbial communities in contaminated soil and water. Techniques that identify and quantify microbial population and catabolic genes involved in biodegradation are examined. In addition, methods that directly link microbial phylogeny to its ecological function at contaminated sites as well as high throughput methods for complex microbial community studies are discussed.  相似文献   
65.
Successful bioremediation of a phenol-contaminated environment requires application of those microbial strains that have acquired phenol tolerance and phenol-degrading abilities. A newly isolated strain B9 of Acinetobacter sp. was adapted to a high phenol concentration by growing sequentially from low- to high-strength phenol. The acclimatised strain was able to grow and completely degrade up to 14?mM of phenol in 136?h. The degradation rates were found to increase with an increase in the phenol concentration from 2.0 to 7.5?mM. The strain preferred neutral to alkaline pH range for growth and phenol degradation, with the optimum being pH 8.0. The optimum temperature for phenol degradation was found to be in the range of 30–35°C. Transmission electron micrographs showed a disorganised and convoluted cell membrane in the case of phenol-stressed cells, showing a major effect of phenol on the membrane. Enzymatic and gas chromatography-mass spectrometry studies show the presence of an ortho-cleavage pathway for phenol degradation. Efficient phenol degradation was observed even in the presence of pyridine and heavy metals as co-toxicants showing the potential of strain in bioremediation of industrial wastes. Application of strain B9 to real tannery wastewater showed 100% removal of initial 0.5?mM phenol within 48?h of treatment.  相似文献   
66.
Arsenic is a significant environmental concern worldwide, primarily due to geo physiochemical contamination of drinking water, and a major public health hazard in both developing and developed countries. The present study was aimed to investigate ameliorative effects of curcumin (Cur) against sodium arsenite (SA)-induced toxicity in cultured murine Sertoli cells. The cells were treated with SA (5 μM) and Cur (5 μg/ml and 10 μg/ml) alone or in combination for 12 hr. The SA treatment decreased cell viability, produced oxidative stress, and induced apoptosis as reflected by reactive oxygen species (ROS) generation, loss of mitochondrial transmembrane potential, DNA fragmentation, and apoptotic cells. Moreover, the SA-induced cell cycle arrest in the cells is characterized by a rise in the number of cells in the sub G1 phase of the cell cycle. The Cur was found to be effective in reversing all these arsenic (As)-induced cellular events. Data suggest that Cur modulates As-mediated oxidative stress, apoptosis, DNA fragmentation, and cell cycle arrest through suppression of excessive ROS generation. Evidence indicates that Cur may emerge as a useful protective agent against As-induced Sertoli cells toxicity by inhibiting As-induced damage in testes.  相似文献   
67.
The river Kali has been one of the major recipients of industrial effluents in the Muzaffarnagar district of western Uttar Pradesh. The present studies revealed the occurrence and bioaccumulation of heavy metals (Cd, Cr, Pb, Zn, Mn) in riverine water, sediment, and muscles of two fish species, Heteropneustis fossilis and Puntius ticto. Data showed that the order of occurrence of heavy metals was Pb > Zn > Mn > Cr > Cd in river water, Mn > Zn > Pb > Cr > Cd in sediment, Zn > Mn > Cr > Cd > Pb in Puntius ticto and Cr > Zn > Mn > Cd > Pb in Heteropneustis fossilis. Results indicate that the concentrations of Cd, Pb, and Zn in river water, Pb, Zn, and Mn in sediment, Cd, Cr, Pb, and Zn concentration in muscles of Puntius ticto and Cr, Pb, and Zn concentration in in muscles of Heteropneustis fossilis are higher than the permissible standard limits. The presence of heavy metals contributed to toxicity in different organs of fish in River Kali. The bioaccumulation of heavy metals in different biotic organisms in river ecosystem may have adverse consequences on humans and livestock.  相似文献   
68.
Journal of Material Cycles and Waste Management - The accumulation of floatable litter load captured in gross pollutant trap (GPT) due to the hydrological runoff has become challenging due to rapid...  相似文献   
69.
Kendrick mass defect was used for PFASs screening in textile finishing agents (TFAs). Total oxidizable precursor assay provides insight into unknown precursors. Perfluorooctane sulfonate was found as impurity in short ECF technology based TFAs. Perfluorooctanoate was also detected in C6 telomerization based TFAs. Long chain precursors were also observed in both types of TFAs. Organofluorinated surfactants are widely employed in textile finishing agents (TFAs) to achieve oil, water, and stain repellency. This has been regarded as an important emission source of per-and polyfluoroalkyl substances (PFASs) to the environment. China is the biggest manufacturer of clothes, and thus TFA production is also a relevant industrial activity. Nevertheless, to date, no survey has been conducted on PFAS contents in commercially available TFAs. In the present study, TFA products were investigated by the Kendrick mass defect method. The quantification results demonstrated a significant presence of perfluorooctane sulfonate (0.37 mg/L) in TFAs manufactured by electrochemical fluorination technology. The products obtained by short-chain PFAS-based telomerization were dominated by perfluorooctanoic acid (mean concentration: 0.29 mg/L), whose values exceeded the limits stated in the European Chemical Agency guidelines (0.025 mg/L). Moreover, the total oxidizable precursor assay indicated high levels of indirectly quantified precursors with long alkyl chains (C7–C9). Together, these results suggest that there is currently a certain of environmental and health risks in China that originates from the utilization of TFAs, and a better manufacturing processes are required to reduce such risks.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号