首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   1篇
  国内免费   6篇
安全科学   3篇
废物处理   21篇
环保管理   4篇
综合类   26篇
基础理论   16篇
环境理论   1篇
污染及防治   40篇
评价与监测   6篇
社会与环境   6篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   10篇
  2011年   12篇
  2010年   2篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   5篇
  2005年   7篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1996年   1篇
  1991年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1961年   1篇
  1960年   1篇
  1959年   2篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
71.
The objective of this work is to examine the influence of oxalic acid formed on the degradation of phenol by Fenton reagent. Oxalic acid formed at initial stage within 30 min significantly suppresses the reduction of ferric ion, thus terminating degradation reaction. The yield of oxalic acid is dependent on the amount of ferrous ion dosed since the minimal amount of oxalic acid is formed after the degradation reaction terminates. Mineralization of phenol by Fenton reagent stagnates after 120 min under the conditions used in this study. The reason why the mineralization stagnated can be assumed to be following two mechanisms other than the depletion of H2O2. In the case where a small amount of ferrous ions is dosed, the reduction of ferric ions is minimal by oxalic acid formed. In the case where a large amount of ferrous ions is dosed, the amount of degradable organic compounds is insufficient owing to preferential conversion to oxalic acid. The mineralization can be enhanced by the intermittent dosing of ferrous ions, which facilitates the suppression of oxalic acid formation during the degradation by Fenton reagent.  相似文献   
72.
Reactive nitrogen species emission from the exhausts of gasoline and diesel vehicles, including nitrogen oxides (NOx) and nitrous acid (HONO), contributes as a significant source of photochemical oxidant precursors in the ambient air. Multiple laboratory and on-road exhaust measurements have been performed to estimate the NOx emission factors from various vehicles and their contribution to atmospheric pollution. Meanwhile, HONO emission from vehicle exhaust has been under-measured despite the fact that HONO can contribute up to 60% of the total hydroxyl budget during daytime and its formation pathway is not fully understood. A profound traffic-induced HONO to NOx ratio of 0.8%, established by Kurtenbach et al. since 2001, has been widely applied in various simulation studies and possibly linked to under-estimation of HONO mixing ratios and OH radical budget in the morning. The HONO/NOx ratios from direct traffic emission have become debatable when it lacks measurements for direct HONO emission from vehicles upon the fast-changing emission reduction technology. Several recent studies have reported updated values for this ratio. This study has reported the measurement of HONO and NOx emission as well as the estimation of exhaust-induced HONO/NOx ratios from gasoline and diesel vehicles using different chassis dynamometer tests under various real-world driving cycles. For the tested gasoline vehicle, which was equipped with three-way catalyst after-treatment device, HONO/NOx ratios ranged from 0 to 0.95 % with very low average HONO concentrations. For the tested diesel vehicle equipped with diesel particulate active reduction device, HONO/NOx ratios varied from 0.16 to 1.00 %. The HONO/NOx ratios in diesel exhaust were inversely proportional to the average speeds of the tested vehicles.

Implications: Photolysis of HONO is a dominant source of morning OH radicals. Conventional traffic-induced HONO/NOx ratio of 0.8% has possibly linked to underestimation of the total HONO budget and consequently underestimation of OH radical budget. The recently reported HONO/NOx ratio of ~1.6% was used to stimulate HONO emission, which resulted in increased HONO concentrations during morning peak hours and its impact of 14% OH increment in the morning. However, the results were still lower than the measured concentrations. More studies should be conducted to establish an updated traffic-induced HONO/NOx ratio.  相似文献   

73.
How to acquire sufficient quantity of nitrogen is a pivotal issue for herbivores, particularly for lepidopterans (butterflies and moths) of which diet quality greatly differs among their life stages. Male Lepidoptera often feed from mud puddles, dung, and carrion, a behavior known as puddling, which is thought to be supplementary feeding targeted chiefly at sodium. During copulation, males transfer a spermatophore to females that contains, besides sperm, nutrients (nuptial gifts) rich in sodium, proteins, and amino acids. However, it is still poorly understood how adults, mostly nectarivores, extract nitrogen from the environment. We examined the availability of two ubiquitous inorganic nitrogenous ions in nature, viz. ammonium (or ammonia) and nitrate ions, as nutrients in a butterfly, and show that exogenous ammonia ingested by adult males of the swallowtail, Papilio polytes, can serve as a resource for protein biosynthesis. Feeding experiments with 15N-labeled ammonium chloride revealed that nitrogen was incorporated into eupyrene spermatozoa, seminal protein, and thoracic muscle. Ammonia uptake by males significantly increased the number of eupyrene sperms in the reproductive tract tissues. The females also had the capacity to assimilate ammonia into egg protein. Consequently, it is evident that acquired ammonia is utilized for the replenishment of proteins allocable for reproduction and somatic maintenance. The active exploitation of exogenous ammonia as a nutrient by a butterfly would foster better understanding of the foraging and reproductive strategies in insects.  相似文献   
74.
The chemistry and flow of water in the abandoned Tomitaka mine of Miyazaki, western Japan were investigated. This mine is located in a non-ferrous metal deposit and acid mine drainage issues from it. The study was undertaken to estimate the quantities of mine drainage that needs to be treated in order to avoid acidification of local rivers, taking into account seasonal variations in rainfall. Numerical models aimed to reproduce observed water levels and fluxes and chemical variations of groundwater and mine drainage. Rock–water interactions that may explain the observed variations in water chemistry are proposed. The results show that: (1) rain water infiltrates into the deeper bedrock through a highly permeable zone formed largely by stopes that are partially filled with spoil from excavations (ore minerals and host rocks); (2) the water becomes acidic (pH from 3 to 4) as dissolved oxygen oxidizes pyrite; (3) along the flow path through the rocks, the redox potential of the water becomes reducing, such that pyrite becomes stable and pH of the mine drainage becomes neutral; and (4) upon leaving the mine, the drainage becomes acidic again due to oxidation of pyrite in the rocks. The present numerical model with considering of the geochemical characteristics can simulate the main variations in groundwater flow and water levels in and around the Tomitaka mine, and apply to the future treatment of the mine drainage.  相似文献   
75.
Zirconium was loaded onto orange waste, a cheap and available agricultural waste in Japan, to investigate the feasibility of its utilization for phosphorus recovery from secondary effluent and side-stream liquid, which contain 5.9 and 68.2 mg/dm3 phosphorus, respectively. The phosphorus removal from side-stream liquid by using zirconium-loaded saponified orange waste (Zr-SOW) gel increased with an increasing solid/liquid ratio, and it was found that Zr-SOW gel showed better performance than zirconium ferrite. The prepared adsorbent was effective for phosphorus removal and exhibited a reasonably high adsorption capacity, twice than that of zirconium ferrite. The secondary effluent was treated in a column packed with Zr-SOW gel, and an dynamic adsorption capacity of 1.3 mol-P/kg was attained. The adsorbed phosphorus from the column was successfully eluted as a concentrated form by using a small amount of 0.2 M NaOH. Throughout the elution process, zirconium was not leaked from the adsorption gel.  相似文献   
76.
In this study, an automatic sampling device and an analysis device have been developed for the measurement of low-volatile organic chlorine (LVOCl) in flue gas. The concentrations of dioxins (polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls) have been estimated by online measurements of LVOCl at a municipal solid waste incinerator (MSWI) using these devices. The LVOCl concentration at the outlet of the selective catalyst reactor (SCR) of the MSWI increased momentarily up to 95 μg Cl m−3 during the startup period of the MSWI; subsequently, it gradually decreased to less than 1.0 μg Cl m−3 after 50 h from the start of waste feeding. The concentration of toxic equivalent quantity (TEQ)-Dioxins at the SCR outlet had a linear positive relationship with the LVOCl concentrations. Moreover, the level of TEQ-Dioxins concentration can be estimated by using this relationship with LVOCl. From our results, since the LVOCl concentrations in a flue gas can thus be automatically analyzed every hour by online measurements, the operators of an MSWI would be able to monitor approximate TEQ-Dioxin emissions on a daily basis.  相似文献   
77.
78.
The ability of FeCl3 to extract Cd from three paddy soils was compared with that of various irons, manganese, and zinc salts to elucidate the extraction mechanism. Manganese, zinc and iron salts (including FeCl3) extracted 4-41%, 8-44% and 24-66% of total Cd, respectively. This difference reflected the pH of the extraction solution, indicating that the primary mechanism of Cd extraction by FeCl3 is proton release coupled with hydroxide generation, as iron hydroxides are insoluble. Washing with FeCl3 led to the formation of Cd-chloride complexes, enhancing Cd extraction from the soils. FeCl3 effectively extracted Cd from all of the three soils compared to HCl that is a conventional washing chemical, when the concentrations of the two washing chemicals were between 15 and 60mM(c) (at above extraction pH 2.4), while the corresponding extraction pH of FeCl3 was slightly higher than HCl. As HCl is the strong acid of complete dissociation, if excess amount of HCl was added to soil, it is possible to give the dissolution of clay minerals in soils. In contrast, proton release from FeCl3 is controlled by the chemical equilibrium of hydroxide formation. While soil fertility properties were affected by a bench-scale soil washing with 45mM(c) FeCl3, adverse effects were not crucial and could be corrected. The bench-scale test confirmed the effectiveness of FeCl3 for removal of soil Cd. The washing had no negative effect on rice yield and lowered the Cd concentration of rice grain and rice straw in a pot experiment.  相似文献   
79.
The leaching behavior of heavy metals from municipal waste incineration (MWI) fly ash was investigated in this study. The leaching process includes two steps, i.e., fly ash was firstly washed with water, and then subjected to citric acid leaching. The main parameters of the washing process such as liquid/solid ratio, washing time, and number of washing were tested. The optimum conditions for water washing were found as follows: washing time 5–10 min, liquid/solid ratio 10:1 (ml:g), and number of washing was twice; under these conditions, 86% Na, 70% K, 12% Ca, 1.2% Al, and 0.5% Pb were removed from the fly ash in the prewashing. From the results of screening tests of leaching lixiviants, citric acid was found to be the most effective leaching agent, taking account of its environmentally benign characteristics. Optimum metal extraction can be achieved with citric acid under the following conditions: pH 3.0, liquid/solid ratio 40 (ml:g), citric acid concentration 0.10 mol/dm3, contact time 20 min at room temperature.  相似文献   
80.
A pilot-scale experiment for carbon dioxide (CO2) sequestration was undertaken at the Nagaoka test field in Japan. Time-lapse crosswell seismic tomography was conducted to detect and monitor the movement of CO2 injected into an aquifer. We applied difference analysis with data normalization (DADN) to the time-lapse data to eliminate false images that were apparent in a conventionally processed difference section. Conventional difference analysis calculates travel-time delays after inversion, whereas the DADN method calculates them from raw travel-time records before inversion. Thus, fewer errors are generated with the DADN method compared to a conventional inversion analysis. We applied the DADN method to time-lapse tomography data recorded before and after the injection of CO2 and computed the velocity variation in a subsurface section, which clearly showed the distribution of CO2 flooding within a high permeability zone in the aquifer and showed no CO2 leakage into the caprock. Our results also show the maximum velocity decrease as a result of CO2 injection was about 9%, which is close to the results obtained in laboratory experiments. Finally, numerical simulations were inverted to test the effectiveness of the conventional and DADN methods in dealing with noise. These tests showed that the DADN method effectively reduces unique coherent noise for particular receiver and source combinations. We concluded that the DADN method provides useful data for monitoring the flow of CO2 sequestered in underground aquifers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号