首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
环保管理   4篇
污染及防治   4篇
评价与监测   5篇
  2019年   1篇
  2014年   1篇
  2013年   2篇
  2011年   3篇
  2007年   4篇
  1986年   1篇
  1972年   1篇
排序方式: 共有13条查询结果,搜索用时 11 毫秒
11.
12.
In 2001–2003, >60,000 km of aerial surveys and 7,700 km of vessel surveys were conducted during June to November when critically endangered Korean–Okhotsk or western gray whales (Eschrichtius robustus) were present off the northeast coast of Sakhalin Island, Russia. Results of surveys in all years indicated gray whales occurred in predominantly two areas, (1) adjacent to Piltun Bay, and (2) offshore from Chayvo Bay, hereafter referred to as the Piltun and offshore feeding areas. In the Piltun feeding area, the majority of whales were observed in waters shallower than 20 m and were distributed from several hundred meters to ∼ 5 km from the shoreline. In the offshore feeding area during all years, the distribution of gray whales extended from southwest to northeast in waters 30–65 m in depth. During all years, the distribution and abundance of whales changed in both the Piltun and offshore feeding areas, and both north–south and inshore–offshore movements were documented within and between feeding seasons. The discovery of a significant number of whales feeding in the offshore area each year was a substantial finding of this study and raises questions regarding western gray whale abundance and population levels, feeding behavior and ecology, and individual site-fidelity. Fluctuations in the number of whales observed within the Piltun and offshore feeding areas and few sightings outside of these two areas indicate that gray whales move between the Piltun and offshore feeding areas during their summer–fall feeding season. Seasonal shifts in the distribution and abundance of gray whales between and within both the Piltun and offshore feeding areas are thought, in part, to be a response to seasonal changes in the distribution and abundance of prey. However, the mechanism driving the movements of whales along the northeast coast of Sakhalin Island is likely very complex and influenced by a multitude of factors. *Deceased  相似文献   
13.
Nonpoint source pollution from agriculture and urbanization is increasing globally at the same time climate extremes have increased in frequency and intensity. We review >200 studies of hydrologic and gaseous fluxes and show how the interaction between land use and climate variability alters magnitude and frequency of carbon, nutrient, and greenhouse gas pulses in watersheds. Agricultural and urban watersheds respond similarly to climate variability due to headwater alteration and loss of ecosystem services to buffer runoff and temperature changes. Organic carbon concentrations/exports increase and organic carbon quality changes with runoff. Nitrogen and phosphorus exports increase during floods (sometimes by an order of magnitude) and decrease during droughts. Relationships between annual runoff and nitrogen and phosphorus exports differ across land use. CH4 and N2O pulses in riparian zones/floodplains predominantly increase with: flooding, warming, low oxygen, nutrient enrichment, and organic carbon. CH4, N2O, and CO2 pulses in streams/rivers increase due to similar factors but effects of floods are less known compared to base flow/droughts. Emerging questions include: (1) What factors influence lag times of contaminant pulses in response to extreme events? (2) What drives resistance/resilience to hydrologic and gaseous pulses? We conclude with eight recommendations for managing watershed pulses in response to interactive effects of land use and climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号