首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   1篇
  国内免费   3篇
安全科学   2篇
废物处理   8篇
环保管理   8篇
综合类   7篇
基础理论   29篇
污染及防治   54篇
评价与监测   32篇
社会与环境   10篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   9篇
  2016年   4篇
  2015年   2篇
  2014年   9篇
  2013年   12篇
  2012年   9篇
  2011年   7篇
  2010年   9篇
  2009年   6篇
  2008年   9篇
  2007年   10篇
  2006年   6篇
  2005年   11篇
  2004年   8篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1990年   1篇
  1985年   1篇
  1967年   1篇
  1965年   2篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
141.
Industrial waste is one of the main causes of environmental pollution. Laser-induced breakdown spectroscopy (LIBS) was applied to detect the toxic metals in the sludge of industrial waste water. Sludge on filter paper was obtained after filtering the collected waste water samples from different sections of a water treatment plant situated in an industrial area of Kanpur City. The LIBS spectra of the sludge samples were recorded in the spectral range of 200 to 500 nm by focusing the laser light on sludge. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique was used for the quantitative measurement of toxic elements such as Cr and Pb present in the sample. We also used the traditional calibration curve approach to quantify these elements. The results obtained from CF-LIBS are in good agreement with the results from the calibration curve approach. Thus, our results demonstrate that CF-LIBS is an appropriate technique for quantitative analysis where reference/standard samples are not available to make the calibration curve. The results of the present experiment are alarming to the people living nearby areas of industrial activities, as the concentrations of toxic elements are quite high compared to the admissible limits of these substances.  相似文献   
142.
The plant foliar surface is the most important receptor of atmospheric pollutants. It undergoes several structural and functional changes when particulate-laden air strikes it. In the present investigation, ten annual plant species viz., Abelmoschus esculentus, Celosia cristata, Coleus blumei, Cyamopsis tetragonolobus, Gomphrena globosa, Impatiens balsamina, Ocimum sanctum, Phaseolus vulgaris, Solanum melongena, and Zinnia elegans were studied for their growth parameters and leaf morphological features. They were subjected to dust experimentally for 60 days. The micro-morphological traits like wax, cuticle, epidermis, stomata, and trichomes were observed under light and scanning electron microscopes. Remarkable differences in the growth parameters and micro-morphological features were recorded in the dust-treated plants when compared to the respective controls. The reduction in growth parameters, the size of epidermal cells, and stomata were reduced and cuticle damage was also observed. The relative proportion of fine particles, which play a major role in hampering the overall growth of a plant, was higher in comparison to ultra-fine and coarse particles.  相似文献   
143.
The abiotic degradation of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was investigated under controlled conditions. Hydrolysis, where it occurred, and photodegradation both followed first-order kinetics for all herbicides. There was no hydrolysis of any of the herbicides in buffer solutions at pH 3 or pH 7; however, slow hydrolysis occurred at pH 9. Estimated half-lives for the three herbicides in solution in the dark were 6.5, 9.2 and 9.6 months for imazaquin, imazethapyr and imazapyr, respectively. Degradation of the herbicides in the light was considerably more rapid than in the dark with half lives for the three herbicides of 1.8, 9.8 and 9.1 days for imazaquin, imazethapyr and imazapyr, respectively. The presence of humic acids in the solution reduced the rate of photodegradation for all three herbicides, with higher concentrations of humic acids generally having greater effect. Photodegradation of imazethapyr was the least sensitive to humic acids. The enantioselectivity of photodegradation was investigated using imazaquin, with photodegradation occurring at the same rate for both enantiomers. Abiotic degradation of imidazolinone herbicides on the soil surface only occurred in the presence of light. The rate of degradation for all herbicides was slower than in solution, with half-lives of 15.3, 24.6 and 30.9 days for imazaquin, imazethapyr and imazapyr, respectively. Abiotic degradation of these herbicides is likely to be slow in the environment and is only likely to occur in clear water or on the soil surface.  相似文献   
144.
Indaziflam is a relatively new herbicide for which sorption–desorption information is lacking, and nothing is available on its metabolites. Information is needed on the multiple soil and pesticide characteristics known to influence these processes. For four soils, the order of sorption was indaziflam (N-[1R,2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl]-6-[(1R)-1-fluoroethyl]-1,3,5-triazine-2,4-diamine) (sandy clay loam: Kf = 5.9, 1/nf = 0.7, Kfoc = 447; sandy loam: Kf = 3.9, 1/nf = 0.9, Kfoc = 276) > triazine indanone metabolite (N-[(1R,2S)-2,3-dihydro-2,6-dimethyl-3-oxo-1H-inden-1-yl]-6-[(1R)-1-fluoroethyl]-1,3,5-triazine-2,4-diamine) (sandy clay loam: Kf = 2.1, 1/nf = 0.8, Kfoc = 177; sandy loam: Kf = 1.7, 1/nf = 0.9, Kfoc = 118) > fluoroethyldiaminotriazine metabolite (6-[(1R-1-Fluoroethyl]-1,3,5-triazine-2,4-diamine) (sandy clay loam: Kf = 0.3, 1/nf = 0.9, Kfoc = 28; sandy loam: Kf = 0.3, 1/nf = 0.9, Kfoc = 22) = indaziflam carboxylic acid metabolite (2S,3R)-3-[[4-amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl]amino]-2,3-dihydro-2-methyl-1H-indene-5-carboxylic acid) (sandy clay loam: Kf = 0.3, 1/nf = 0.9, Kfoc = 22; sandy loam: Kf = 0.5, 1/nf = 0.8, Kfoc = 32). The metabolites being more polar than the parent compound showed lower sorption. Desorption was hysteretic for indaziflam and triazine indanone metabolite, but not for the other two metabolites. Unsaturated transient flow Kd's were lower than batch Kd's for indaziflam, but similar for fluoroethyldiaminotriazine metabolite. Batch Kd's would overpredict potential offsite transport if desorption hysteresis is not taken into account.  相似文献   
145.
The present study was aimed to characterize physico-chemical and microbial population of distillery effluent and isolate a novel thermotolerant bacterium for color, COD, and BOD reduction of spentwash. The level of alkalinity, TSS, DO, COD, BOD, TN, ammonical nitrogen, nitrate nitrogen, phosphorous, potassium, chloride, and calcium of spentwash (SW), bioreactor effluent (BE), and secondary treated effluent (STE) were well above the permissible limits. The level of color, TS, and TDS were under the permissible limits for STE but not for SW and BE. The microbial population was higher in BE. The results revealed that effluent was highly polluted and require suitable treatment before discharge. A novel thermotolerant bacterium, identified as Pediococcus acidilactici, was isolated which exhibited maximum 79 % decolorization, 85 % COD, and 94 % BOD reduction at 45 °C using 0.1 %, glucose; 0.1 %, peptone; 0.05 %, MgSO4; 0.05 %, K2HPO4; pH 6.0 within 24 h under static condition. The ability of this strain to decolorize melanoidin at minimum carbon and nitrogen supplementation warrants its possible application for effluent treatment at industrial level. In addition, it is first instance when melanoidin decolorization was reported by P. acidilactici. This study could be an approach towards control of environmental pollution and health hazards of people in and around the effluent distillery unit.  相似文献   
146.
147.
World wide arsenic (As) contamination of rice has raised much concern as it is the staple crop for millions. Four most commonly cultivated rice cultivars, Triguna, IR-36, PNR-519 and IET-4786, of the West Bengal region were taken for a hydroponic study to examine the effect of arsenate (AsV) and arsenite (AsIII) on growth response, expression of genes and antioxidants vis-à-vis As accumulation. The rice genotypes responded differentially under AsV and AsIII stress in terms of gene expression and antioxidant defences. Some of the transporters were up-regulated in all rice cultivars at lower doses of As species, except IET-4786. Phytochelatin synthase, GST and γ-ECS showed considerable variation in their expression pattern in all genotypes, however in IET-4786 they were generally down-regulated in higher AsIII stress. Similarly, most of antioxidants such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) increased significantly in Triguna, IR-36 and PNR-519 and decreased in IET-4786. Our study suggests that Triguna, IR-36 and PNR-519 are tolerant rice cultivars accumulating higher arsenic; however IET-4786 is susceptible to As-stress and accumulates less arsenic than other cultivars.  相似文献   
148.
Nag SK  Kookana R  Smith L  Krull E  Macdonald LM  Gill G 《Chemosphere》2011,84(11):1572-1577
We evaluated wheat straw biochar produced at 450 °C for its ability to influence bioavailability and persistence of two commonly used herbicides (atrazine and trifluralin) with different modes of action (photosynthesis versus root tip mitosis inhibitors) in two contrasting soils. The biochar was added to soils at 0%, 0.5% and 1.0% (w/w) and the herbicides were applied to those soil-biochar mixes at nil, half, full, two times, and four times, the recommended dosage (H4). Annual ryegrass (Lolium rigidum) was grown in biochar amended soils for 1 month. Biochar had a positive impact on ryegrass survival rate and above-ground biomass at most of the application rates, and particularly at H4. Within any given biochar treatment, increasing herbicide application decreased the survival rate and fresh weight of above-ground biomass. Biomass production across the biochar treatment gradient significantly differed (< 0.01) and was more pronounced in the case of atrazine than trifluralin. For example, the dose-response analysis showed that in the presence of 1% biochar in soil, the value of GR50 (i.e. the dose required to reduce weed biomass by 50%) for atrazine increased by 3.5 times, whereas it increased only by a factor of 1.6 in the case of trifluralin. The combination of the chemical properties and the mode of action governed the extent of biochar-induced reduction in bioavailability of herbicides. The greater biomass of ryegrass in the soil containing the highest biochar (despite having the highest herbicide residues) demonstrates decreased bioavailability of the chemicals caused by the wheat straw biochar. This work clearly demonstrates decreased efficacy of herbicides in biochar amended soils. The role played by herbicide chemistry and mode of action will have major implications in choosing the appropriate application rates for biochar amended soils.  相似文献   
149.
Growth and metal accumulation were investigated in two Cicer arietinum L. varieties (var. CSG-8962 and var. C-235) when grown in various combinations of fly ash (FA) amended with garden soil (GS), press mud (PM) or saw dust (SD). In addition, the levels of photosynthetic pigments, nitrate reductase (NR) activity, cysteine, non-protein thiols (NP-SH), and ascorbic acid were studied. FA amended with GS or PM led to a 5–10 times increase in biomass compared to FA control and was most pronounced in the less metal tolerant variety CSG-8962. Amendment of FA with either GS or PM only moderately increased the contents of some essential metals whereas the non-essential Cd and Cr remained similar or decreased slightly compared to FA control. FA combined with either GS or PM increased the amount of photosynthetic pigments and was largely absent when SD was added to FA. Improved nitrogen availability led to increased nitrate reductase (NR) activity with all amendments but less so with SD. Metal stress indicating parameters were generally reduced (cysteine and non-protein thiols) or unchanged (ascorbic acid). In conclusion, of the tested ameliorants both GS and PM greatly improved growth of C. arietinum making FA a suitable component of plant growth substrates.  相似文献   
150.
Environment, Development and Sustainability - Globally, human–wildlife conflict (HWC) is a burning issue, which the conservationists have attempted to address through various conservation...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号