首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   1篇
  国内免费   3篇
安全科学   2篇
废物处理   9篇
环保管理   6篇
综合类   7篇
基础理论   24篇
污染及防治   25篇
评价与监测   4篇
社会与环境   3篇
灾害及防治   1篇
  2023年   6篇
  2022年   8篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   13篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有81条查询结果,搜索用时 281 毫秒
71.
72.
Environmental Geochemistry and Health - The aim of this a pioneering research is to investigate linear alkylbenzenes (LABs) as biomarkers of sewage pollution in sediments collected from four rivers...  相似文献   
73.
In order to study the suitability of composting olive mill wastewater (OMW-L) by repeated applications, OMW-L was added to one mixture of lawn trimmings and olive husks as bulking agents. The composting process of this mixture was compared with another pile having 35% of olive mill wastewater sludge (OMW-S) obtained from evaporation ponds and a third, as a control, without olive mill wastewater. The repeated applications of OMW-L resulted in a sharp decrease in respiration measurements after the first 20 days of composting and showed a re-increase after 40 days following the substituting of OMW-L by water. The OMW-L addition increased the rate of water-soluble phenols in the compost and caused the appearance of a phenol fraction of high molecular-mass (510 kDa) at the end of composting. OMW-L addition also caused a clear decrease in both thermophilic bacteria and thermophilic eumycete counts. A longer persistence of phytotoxicity was observed in comparison with the other piles. However, the OMW-S produced a compost with a high degree of maturity.  相似文献   
74.

Global pollution by plastics derived from petroleum has fostered the development of carbon–neutral, biodegradable bioplastics synthesized from renewable resources such as modern biomass, yet knowledge on the impact of bioplastics on ecosystems is limited. Here we review the polylactic acid plastic with focus on synthesis, biodegradability tuning, environmental conversion to microplastics, and impact on microbes, algae, phytoplankton, zooplankton, annelids, mollusk and fish. Polylactic acid is a low weight semi-crystalline bioplastic used in agriculture, medicine, packaging and textile. Polylactic acid is one of the most widely used biopolymers, accounting for 33% of all bioplastics produced in 2021. Although biodegradable in vivo, polylactic acid is not completely degradable under natural environmental conditions, notably under aquatic conditions. Polylactic acid disintegrates into microplastics faster than petroleum-based plastics and may pose severe threats to the exposed biota.

  相似文献   
75.
Enhanced anaerobic dechlorination is being conducted to remediate a 50‐acre groundwater area impacted with chlorinated volatile organic compounds (CVOCs). The plume, which is over 3,000 feet (ft) long, initially contained tetrachloroethene and breakdown products at concentrations of 2 to 3 milligrams per liter. The site's high groundwater flow velocity (greater than 1,000 ft per year) was incorporated into the design to help with amendment distribution. Bioaugmentation was conducted using a mixed culture containing Dehalococcoides ethenogenes. There is evidence that it has migrated to distances exceeding 600 ft. The major benefit of the high groundwater flow velocity is greater areal coverage by the remediation system, but the downside is the difficulty in delivering sufficient donor to create the required anaerobic conditions. Overall performance has been excellent with total CVOC reductions and conversion to ethene of 98 percent within a 25‐acre area downgradient of the treatment transect that has operated the longest. © 2011 Wiley Periodicals, Inc.  相似文献   
76.
The concentrations of copper (Cu) and lead (Pb) in, and the biomass of, the different parts of Persicaria glabra (Willd.) Gamez and Juncellus alopecuroides (Rottb.) C.B.Cl. were evaluated while grown in pots under laboratory conditions. Cu and Pb were added as sulphates (50, 100, 200, 400 mg/kg) to the pots. Heavy metal concentrations in the plants were measured by atomic absorption spectrometry. Results reveal that the biomass of J. alopecuroides (particularly roots) was higher than P. glabra, and that the growth tendency of macrophytes decreased with increasing heavy metal concentration in the soil, while in P. glabra, biomass went on increasing with the increase in copper concentration. Heavy metal accumulation in the roots was more than in aerial parts, and, therefore, barring two exceptions, the transfer factor of heavy metals from roots to aerial parts showed as less than 1, suggesting less transfer of heavy metals from roots to aerial parts. Thus, these macrophytes are efficient accumulators of trace elements, particularly J. alopecuroides, which can be recommended for biofiltration of heavy metals from contaminated soils.  相似文献   
77.
We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0435-1) contains supplementary material, which is available to authorized users.  相似文献   
78.
'In connection with the Taparura Project, we studied the distribution of phytoplankton and zooplankton communities in relation to environmental variables at 18 stations sampled during four coastal cruises conducted between October 2009 and July 2010 on the north coast of Sfax (Tunisia, western Mediterranean Sea). The inshore location was largely dominated by diatoms (66 %) represented essentially by members of the genera Navicula, Grammatophora, and Licmophora. Dinophyceae were numerically the second largest group and showed an enhanced species richness. Cyanobacteriae developed in association with an important proliferation of colonial Trichodesmium erythraeum, contributing 39.4 % of total phytoplankton abundances. The results suggest that phytoplankters are generally adapted to specific environmental conditions. Copepods were the most abundant zooplankton group (82 %) of total zooplankton. A total of 21 copepod species were identified in all stations, with an overwhelming abundance of Oithona similis in autumn and summer, Euterpina acutifrons in winter, and Oncaea conifera in spring. The phosphogypsum restoration had been acutely necessary allowing dominant zooplankton species to exploit a wide range of food resources including phytoplankton and thus improving water quality.  相似文献   
79.
Journal of Polymers and the Environment - Algae are an enormous source of polysaccharides and have gained much interest in human flourishing as organic drugs. Algal polysaccharides have aroused...  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号