首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   1篇
  国内免费   1篇
废物处理   6篇
环保管理   33篇
综合类   15篇
基础理论   7篇
污染及防治   37篇
评价与监测   5篇
社会与环境   2篇
灾害及防治   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有107条查询结果,搜索用时 281 毫秒
101.
Nano-textured polysilicon (poly-Si) solar absorption films are to be applied to the solar receiver of solar thermal electricity Stirling engine. These films were fabricated by deposition of hydrogenated amorphous silicon films (a-Si:H) into poly-Si films, using the pulse-wave modulation plasma and furnace annealing of the a-Si:H films. This is followed by wet etching of poly-Si films into nano-textured structures. The films are then coated with a-SiNx:H films as the antireflection and protection layers. It was observed that increasing the pulsed plasma turn-on (ton) time leads to deposition of less dense a-Si:H film with high hydrogen content and void density. This results in films having low dielectric constant and refractive index, and high optical bandgap. Less-dense a-Si:H film can be transferred into large grain size poly-Si film, using annealing. Also, highly rough nano-textured surface structure can be produced, by etching. The denser a-Si:H film, large grain size poly-Si film, and nano-textured surface poly-Si film can enhance the absorbance of sunlight and reduce the emissivity of far infrared light. The nano-textured poly-Si film coated with an a-SiNx:H layer can effectively increase the absorbance of sunlight to approximately 85% and reduce the emissivity of far infrared light to 49%. The nano-textured poly-Si/a-SiNx:H films can be used as efficient solar absorption films for solar thermal electricity Stirling engine.  相似文献   
102.
Jang, Cheng‐Shin, Chen‐Wuing Liu, Shih‐Kai Chen, and Wen‐Sheng Lin, 2011. Using a Mass Balance Model to Evaluate Groundwater Budget of Seawater‐Intruded Island Aquifers. Journal of the American Water Resources Association (JAWRA) 48(1): 61‐73. DOI: 10.1111/j.1752‐1688.2011.00593.x Abstract: The study developed a mass balance model to evaluate the groundwater budget of seawater‐intruded island aquifers using limited available data. The Penghu islands were selected as a study area. As sparse observed data were available in the islands, methods of combining water and chloride balances were used to determine the amounts of groundwater pumping, seawater intrusion, aquifer storages, and safe yields in the shallow and deep aquifers. The groundwater budget shows that seawater intrusion to freshwater aquifers was 1.38 × 106 and 0.29 × 106 m3/year in the shallow and deep aquifers, respectively, indicating that the seawater intrusion is severe in the both aquifers. The safe yield of the shallow aquifer was 14.56 × 106 m3/year in 2005 which was four times higher than that of the deep aquifer (3.70 × 106 m3/year). However, the annual pumping amounts in the shallow and deep aquifers were 4.77 × 106 and 3.63 × 106 m3/year, respectively. Although the safe yield of the shallow aquifer is enough for all water resources demands, only 55% of exploitation amount was extracted from the shallow aquifer due to its poor water quality. Groundwater exploitation in the deep aquifer should be significantly reduced and regulated by a dynamic management of pumping scheme because the annual pumping amounts are close to the safe yield and seawater intrusion occurs continually. Additionally, to alleviate further aquifer salination, at least half of the current annual groundwater abstraction should be reduced.  相似文献   
103.
Lu X  Shih K 《Chemosphere》2012,86(8):817-821
The feasibility and mechanism of incorporating simulated lead-laden sludge into low-cost ceramic products was investigated by observing the reaction of lead with two kaolinite-based precursors under sintering conditions. To investigate the phase transformation process of lead, lead oxide (PbO) mixed with a kaolinite or mullite precursor were fired at 500-950 °C for 3 h. Detailed X-ray diffraction analysis of sintered products revealed that both precursors had crystallochemically incorporated lead into the lead feldspar (PbAl2Si2O8) crystalline structure. By mixing lead oxide with kaolinite, lead feldspar begins to crystallize at 700 °C; maximum incorporation of lead into this structure occurred at 950 °C. However, two intermediate phases, Pb4Al4Si3O16 and a polymorph of lead feldspar, were detected at temperatures between 700 and 900 °C. By sintering lead oxide with the mullite precursor, lead feldspar was detected at temperatures above 750 °C, and an intermediate phase of Pb4Al4Si3O16 was observed in the temperature range of 750-900 °C. This study compared the lead leachabilities of PbO and lead feldspar using a prolonged leaching test (at pH 2.9 for 23 d) modified from the toxicity characteristic leaching procedure. The results indicate the superiority of lead feldspar in stabilizing lead and suggest a promising and reliable strategy to stabilize lead in ceramic products.  相似文献   
104.
Tsai SW  Shih MW  Pan YP 《Chemosphere》2008,72(9):1250-1255
Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) is a widely used antibacterial agent. However, it was concerned recently that triclosan might act as an antibiotic and will cause resistant bacterial strains. Furthermore, possible formation of toxic chloroform was also reported when the triclosan contained in household dishwashing soaps reacted with the chlorinated water. To assess the associate risks from possible exposures, concentrations of triclosan in household food detergents of Taiwan were determined in this study. High performance liquid chromatography (HPLC) with UV detector at 280 nm was used to analyze the triclosan in samples. Factors that might affect the residual characteristics of triclosan from detergents on dishware and fruits, including the concentrations of detergents used, the temperature and immersion time for water before the cleaning processes, the temperatures of water used for the cleaning processes, and the materials of dishware made of, were evaluated under the orthogonal experiment design by the Taguchi method. By the analysis of variance, the orders of importance of different parameters were determined. The concentrations of triclosan detected in household food detergents were found to be 1.7 x 10(-2) -5.6 x 10(-1) (triclosan/detergent, mg g(-1)). For residual characteristics, the concentration of detergents used as well as the materials of dishware were found to be the significant factors that will affect the triclosan left on the dishware. On the other hand, the concentration of triclosan in the detergents was found to be the only factor that will affect the triclosan left on fruits. The maximum dose of triclosan exposures from the use of household food detergents in Taiwan was also estimated in the study.  相似文献   
105.
The application of immunofluorescent labeling using quantum dots for detection of inactivated Cryptosporidium parvum oocysts in spiked water samples (reservoir water, treated wastewater effluent, permeate of a membrane bioreactor, and tap water) provided more consistent results compared with the organic fluorophores label. The varying degree of particles present in the different water samples (with turbidity ranging from 0.2 to 6.1 NTU) in nonconcentrated water samples had insignificant interference on the labeled counts (2-sample t-tests, p > 0.236) using the quantum dot label, while the quantum dot label provided an advantage of approximately 50% lower interference in concentrated water samples compared with the organic fluorophores label.  相似文献   
106.
Hsieh CH  Lo SL  Hu CY  Shih K  Kuan WH  Chen CL 《Chemosphere》2008,71(9):1693-1700
Industrial wastewater sludge was treated by microwave processes to enhance the stabilization of laden copper. The effects of additives, processing time, microwave adsorbents, moisture content, reaction atmosphere, and cooling gas were investigated. The stabilization results were significantly enhanced by metal powder additives, prolonged microwave processing time, proper moisture content, the addition of carbonaceous materials, and a reaction environment with inert gas. It was also found that the moisture content would increase the homogeneity of applied microwave energy, and thus achieve a better overall efficiency between stabilizing agents and copper. The added metal powders may reduce Cu(II) to Cu(0) in the sludge or TCLP. The resulting thermal energy of microwave radiation, and microarcing process and the oxidation heat of Al powder may also assist the transformation of Cu(II) into CuO and CuAl2O4 phases. Part of the sludge was vitrified within inert gas environment when the processing time was longer than 18 min and active carbon dosage was more than 3g. Reduction reactions also occurred in the hybrid microwave processes, leading to the reduction of sulfates and metal ions, and the formation of Cu2S and FeS. Moreover, the microwave radiation can also enhance the feasibility of co-treating of inorganic and organic solid waste.  相似文献   
107.
Xu X  Chang SG 《Chemosphere》2007,67(8):1628-1636
The addition of metal chelates such as Fe(II)EDTA or Fe(II)Cit to wet flue gas desulfurization systems has been shown to increase the amount of NO(x) absorption from gas streams containing SO(2). This paper attempts to demonstrate the advantage of not only using Fe(II)Cit chelate to absorb nitrogen oxides from flue gas but also the advantage gained from adding microorganisms to the system. Two distinct classes of microorganisms are needed: denitrifying and iron-reducing bacteria. The presence of oxygen in flue gas will affect the absorption efficiency of NO by Fe(II)Cit chelate. The oxidation of Fe(II) can be slowed with the help of bacteria in two ways: bacteria can serve to directly reduce Fe(III) to Fe(II) or they can serve to keep levels of dissolved oxygen in the solution low. As a result, after NO absorption, Fe(II)(Cit)NO will be reduced by denitrifying bacteria to Fe(II)Cit while Fe(III) is reduced by anaerobic bacteria back to Fe(II). Our experiments have shown that the implementation of our protocol allowed for an NO reduction rate constant increase from standard levels of 0.0222-0.100 m Mh(-1) with inlet NO changed from 250 to 1000 ppm. We have also found that total Fe concentration tends to decrease after prolonged periods of operation due to the loss of some Fe to the formation of Fe(OH)(3) that settles together with the sludge at the bottom of bioreactor tank.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号