全文获取类型
收费全文 | 2927篇 |
免费 | 168篇 |
国内免费 | 970篇 |
专业分类
安全科学 | 213篇 |
废物处理 | 178篇 |
环保管理 | 254篇 |
综合类 | 1535篇 |
基础理论 | 523篇 |
污染及防治 | 984篇 |
评价与监测 | 167篇 |
社会与环境 | 127篇 |
灾害及防治 | 84篇 |
出版年
2024年 | 7篇 |
2023年 | 57篇 |
2022年 | 198篇 |
2021年 | 178篇 |
2020年 | 128篇 |
2019年 | 102篇 |
2018年 | 117篇 |
2017年 | 167篇 |
2016年 | 190篇 |
2015年 | 203篇 |
2014年 | 246篇 |
2013年 | 305篇 |
2012年 | 246篇 |
2011年 | 248篇 |
2010年 | 183篇 |
2009年 | 180篇 |
2008年 | 201篇 |
2007年 | 156篇 |
2006年 | 170篇 |
2005年 | 121篇 |
2004年 | 76篇 |
2003年 | 61篇 |
2002年 | 64篇 |
2001年 | 53篇 |
2000年 | 66篇 |
1999年 | 59篇 |
1998年 | 54篇 |
1997年 | 41篇 |
1996年 | 40篇 |
1995年 | 27篇 |
1994年 | 25篇 |
1993年 | 18篇 |
1992年 | 10篇 |
1991年 | 11篇 |
1990年 | 11篇 |
1989年 | 8篇 |
1988年 | 7篇 |
1987年 | 1篇 |
1986年 | 5篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1978年 | 2篇 |
1976年 | 2篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1972年 | 1篇 |
排序方式: 共有4065条查询结果,搜索用时 15 毫秒
991.
Ming W. Song Ping Huang Feng Li Hui Zhang Kai Z. Xie Xi H. Wang Guo X. He 《Environmental monitoring and assessment》2011,172(1-4):589-603
Water quality information of Beijiang River, a tributary of Pearl River in Guangdong, China, was analyzed to provide an overview of the hydrochemical functioning of a major agricultural/rural area and an industrial/urban area. Eighteen water quality parameters were surveyed at 13 sites from 2005 to 2006 on a monthly basis. A bivariate correlation analysis was carried out to evaluate the regional correlations of the water quality parameters, while the principal component analysis (PCA) technique was used to extract the most influential variables for regional variations of river water quality. Six principal components were extracted in PCA which explained more than 78% and 84% of the total variance for agricultural/rural and industrial/urban areas, respectively. Physicochemical factor, organic pollution, sewage pollution, geogenic factor, agricultural nonpoint source pollution, and accumulated pesticide usage were identified as potential pollution sources for agricultural/rural area, whereas industrial wastewaters pollution, mineral pollution, geogenic factor, urban sewage pollution, chemical industrial pollution, and water traffic pollution were the latent pollution sources for industrial/urban area. A multivariate linear regression of absolute principal component scores (MLR-APCS) technique was used to estimate contributions of all identified pollution sources to each water quality parameter. High coefficients of determination of the regression equations suggested that the MLR-APCS model was applicable for estimation of sources of most water quality parameters in the Beijiang River Basin. 相似文献
992.
Wei Chen Mingming Jing Jianwei Bu Julia Ellis Burnet Shihua Qi Qi Song Yibing Ke Jinjie Miao Meng Liu Chen Yang 《Environmental monitoring and assessment》2011,177(1-4):1-21
Fourteen surface water and nine surface sediment samples were collected from the Peacock River and analyzed for organochlorine pesticides (OCPs) by gas chromatograph?Celectron capture detector (GC-ECD). All the analyzed organochlorine pesticides, except o,p ??-DDT, were detected in sediments from the Peacock River; but in the water samples, only ??-HCH, HCB, p,p ??-DDD, and p,p ??-DDT were detected at some sites. The ranges for total OCPs in the water and sediments were from N.D. to 195 ng l???1 and from 1.36 to 24.60 ng g???1, respectively. The only existing HCH isomer in the water, ??-HCH, suggested that the contamination by HCHs could be attributed to erosion of the weathered agricultural soils containing HCHs compounds. Composition analyses showed that no technical HCH, technical DDT, technical chlordanes, endosulfans, and HCB had been recently used in this region. However, there was new input of ??-HCH (lindane) into the Peacock River. The most probable source was water flowing from Bosten Lake and/or agricultural tailing water that was returned directly into the Peacock River. DDT compounds in the sediments may be derived mainly from DDT-treated aged and weathered agricultural soils, the degradation condition was aerobic and the main product was DDE. HCB in the sediment might be due to the input from Bosten Lake and the lake may act as an atmospheric deposition zone. There was no significant correlation between the concentrations of OCPs (including ??HCH, ??DDT, chlordanes, endosulfans, HCB and total OCPs) and the content of fine particles (<63 ??m). The concentrations of OCPs were affected by salinity. 相似文献
993.
Xue Song Wang Guang Chao Zhu Shu Jun Wang Wen Ya Wan Ye Bin Tan 《Environmental monitoring and assessment》2011,177(1-4):263-272
The concentrations and chemical partitioning of heavy metals (Co, Cr, Ni, Zn, Cu, and Pb) in the marine near-shore sediment cores were investigated. Typically, the mean concentrations from Core B sediment samples were 98.6, 21.1, 47.0, 46.4, 107.6, and 31.9 mg kg???1 for Cr, Co, Ni, Cu, Zn, and Pb, respectively. The heavy metal concentrations were normalized to commonly used reference elements Al, Li, Sc, and total organic carbon. Based on Pearson coefficients, Li was found to be a good normalizer for Co (r?= 0.974), Cr (r?= 0.967), Ni (r?= 0.898), and Zn (r?= 0.929) in 80 sediment samples from three sampling sites. However, the correlation coefficients between Li and Cu, and Li and Pb were relatively low. Multivariate statistic approaches (Principal Component Analysis and Cluster Analysis) were adopted for data treatment, allowing the identification of two main factors controlling the heavy metal variability in the sediments. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. The results showed that the residual, Fe/Mn oxides and Organic/sulfide fractions were dominant geochemical phases in the enriched sections, indicating low bioavailability of heavy metals in sediments. 相似文献
994.
Behaviors of dissolved antimony in the Yangtze River Estuary and its adjacent waters 总被引:5,自引:0,他引:5
Antimony is a naturally occurring and cumulatively toxic element. With increasing concern as an inorganic contaminant, research on its environmental behavior is becoming a necessity. However, very little is known about this element. To further understand its biogeochemical behaviors and roles in the ecosystem, the main species of dissolved inorganic antimony (Sb(iii) and Sb(v)) in Yangtze River Estuary and its adjacent waters were determined by hydride generation and atomic fluorescence (HG-AFS) in our study. Results show that in surface water, the concentration for Sb(iii) and Sb(v) were in the range 0.029 μg L(-1)~ 0.736 μg L(-1) and 0.121 μg L(-1)~ 2.567 μg L(-1), with averages of 0.152 μg L(-1) and 0.592 μg L(-1), respectively. While concentrations of Sb(iii) and Sb(v) in the bottom layer were much lower, ranging from 0.023 μg L(-1) to 0.116 μg L(-1) (average of 0.050 μg L(-1)) and from 0.047 μg L(-1) to 0.441 μg L(-1) (average of 0.194 μg L(-1)), respectively. Data analysis further demonstrates that the major processes controlling antimony geochemistry in the area are riverine input, atmospheric deposition, incursion of Taiwan Warm Current, and release from particulate phase. The surface-enrichment and bottom-depletion depth profile reveals it does appear as a mildly scavenged element but is less like arsenic than previously believed. Sb(v) was the predominant speciation in aquatic environment of our research, and Sb(iii) was a minor constituent of the total antimony. Regarding the adsorption-desorption process onto SPM, Sb(iii) has a higher affinity to particulate phase than Sb(v). Furthermore, the significant correlation between antimony and nutrients indicates it is an element with great biological potential, which is also an important behavior for antimony. 相似文献
995.
Jeong U Kim J Lee H Jung J Kim YJ Song CH Koo JH 《Journal of environmental monitoring : JEM》2011,13(7):1905-1918
The contributions of long range transported aerosol in East Asia to carbonaceous aerosol and particulate matter (PM) concentrations in Seoul, Korea were estimated with potential source contribution function (PSCF) calculations. Carbonaceous aerosol (organic carbon (OC) and elemental carbon (EC)), PM(2.5), and PM(10) concentrations were measured from April 2007 to March 2008 in Seoul, Korea. The PSCF and concentration weighted trajectory (CWT) receptor models were used to identify the spatial source distributions of OC, EC, PM(2.5), and coarse particles. Heavily industrialized areas in Northeast China such as Harbin and Changchun and East China including the Pearl River Delta region, the Yangtze River Delta region, and the Beijing-Tianjin region were identified as high OC, EC and PM(2.5) source areas. The conditional PSCF analysis was introduced so as to distinguish the influence of aerosol transported from heavily polluted source areas on a receptor site from that transported from relatively clean areas. The source contributions estimated using the conditional PSCF analysis account for not only the aerosol concentrations of long range transported aerosols but also the number of transport days effective on the measurement site. Based on the proposed algorithm, the condition of airmass pathways was classified into two types: one condition where airmass passed over the source region (PS) and another condition where airmass did not pass over the source region (NPS). For most of the seasons during the measurement period, 249.5-366.2% higher OC, EC, PM(2.5), and coarse particle concentrations were observed at the measurement site under PS conditions than under NPS conditions. Seasonal variations in the concentrations of OC, EC, PM(2.5), and coarse particles under PS, NPS, and background aerosol conditions were quantified. The contributions of long range transported aerosols on the OC, EC, PM(2.5), and coarse particle concentrations during several Asian dust events were also estimated. We also investigated the performance of the PSCF results obtained from combining highly time resolved measurement data and backward trajectory calculations via comparison with those from data in low resolutions. Reduced tailing effects and the larger coverage over the area of interest were observed in the PSCF results obtained from using the highly time resolved data and trajectories. 相似文献
996.
S. C. Faulkner M. C. A. Stevens S. S. Romañach P. A. Lindsey S. C. Le Comber 《Conservation biology》2018,32(3):685-693
Poaching can have devastating impacts on animal and plant numbers, and in many countries has reached crisis levels, with illegal hunters employing increasingly sophisticated techniques. We used data from an 8‐year study in Savé Valley Conservancy, Zimbabwe, to show how geographic profiling—a mathematical technique originally developed in criminology and recently applied to animal foraging and epidemiology—can be adapted for use in investigations of wildlife crime. The data set contained information on over 10,000 incidents of illegal hunting and the deaths of 6,454 wild animals. We used a subset of data for which the illegal hunters’ identities were known. Our model identified the illegal hunters’ home villages based on the spatial locations of the hunting incidences (e.g., snares). Identification of the villages was improved by manipulating the probability surface inside the conservancy to reflect the fact that although the illegal hunters mostly live outside the conservancy, the majority of hunting occurs inside the conservancy (in criminology terms, commuter crime). These results combined with rigorous simulations showed for the first time how geographic profiling can be combined with GIS data and applied to situations with more complex spatial patterns, for example, where landscape heterogeneity means some parts of the study area are less likely to be used (e.g., aquatic areas for terrestrial animals) or where landscape permeability differs (e.g., forest bats tend not to fly over open areas). More broadly, these results show how geographic profiling can be used to target antipoaching interventions more effectively and more efficiently and to develop management strategies and conservation plans in a range of conservation scenarios. 相似文献
997.
Eunjung Song Soeun Kim Seungsik Hwang Woojoo Lee 《Environmental and Ecological Statistics》2018,25(3):341-362
In ecological studies, researchers often try to convey the analysis results to individual level based on aggregate data. In order to do this correctly, the possibility of ecological bias should be studied and addressed. One of the key ideas used to address the ecological bias issue is to derive the ecological model from the individual model and to check whether the parameter of interest in the individual model is identifiable in the ecological model. However, the procedure depends on unverifiable assumptions, and we recommend checking how sensitive the results are to these unverifiable assumptions. We analyzed the tuberculosis data that was collected in Seoul in 2005 using a spatial ecological regression model for the aggregate count data with spatial correlation, and found that the deprivation index is likely to have a small positive effect on the occurrence risk of tuberculosis in individual level in Seoul. We considered this finding in various aspects by performing in depth sensitivity analyses. In particular, our findings are shown to be robust to the distribution assumptions for the individual exposure and missing binary covariate across various scenarios. 相似文献
998.
Thi Hoang Thao Nguyen Jin Hwan Hwang Sang-Il Lee Bong-Oh Kwon 《Environmental Fluid Mechanics》2018,18(5):1077-1099
Although the flow dynamics of pure liquid drops in other liquids has been well researched, little attention has been paid to the impacts of impurities. Hence, most of research is not directly applicable to the real world. To address this gap, we conducted numerical experiments simulating the rise of pure and contaminated drops. It was selected to study liquid CO2 drops contaminated with SO2 under high pressure because such mixtures mimic potential scenarios in which drops may leak from carbon capture and storage (CCS) facilities or pipelines. First, numerical simulation experiments were performed to validate our method by comparing our results with previous research on pure drops. Second, the validated numerical approach was applied to simulations of contaminated drops to investigate how contaminants affect rising drops. The results show that the SO2 contamination caused changes in deformation, breakup phenomena, rising velocities, surrounding flow fields and drag coefficients. Most importantly, the contamination resulted in the formation of smaller “child drops”; such breakup is not observed in pure CO2 drops. The formation of child drops in turn affects the streamlines, patterns and areas of wakes behind the contaminated drops. The addition of contaminants also enhances the dissolution rate, which is affected by the contaminant concentration and by the flow dynamics of the rising drop. Our results would improve understanding the rise of impure CO2 drops, such as drops potentially leaked by future CCS operations. 相似文献
999.
Ronghui Ye Chenming Zhang Jun Kong Guangqiu Jin Hongjun Zhao Zhiyao Song Ling Li 《Environmental Fluid Mechanics》2018,18(6):1379-1411
This paper proposes a new high-resolution finite volume method for solving the two-dimensional (2D) solute transport equation using an unstructured mesh. A new simple r-factor algorithm is introduced into the Total Variation Diminishing flux limiter to achieve a more efficient yet accurate high-resolution scheme for solving the advection term. To avoid the physically-meaningless negative solutions resulted from using the Green–Gauss theorem, a nonlinear two-point flux approximation scheme is adopted to deal with the anisotropic diffusion term. The developed method can be readily coupled with a two-dimensional finite-volume-based flow models under unstructured triangular mesh. By integrating with the ELCIRC flow model, the proposed method was verified using three idealized benchmark cases (i.e., advection of a circle-shaped solute field, advection in a cyclogenesis flow field and transport of a initially square-shaped solute plume), and further applied to simulate the non-reactive solute transport process driven by irregular tides in the Deep Bay, eastern Pearl River Estuary of China. These cases are also simulated by models using other existing methods, including different r-factor for advection term and the Green–Gauss theorem for diffusion term. The comparison between the results from the new method and those from other existing methods demonstrated the new method could describe advection induced concentration shock and discontinuities, and anisotropic diffusion at high resolution without providing spurious oscillations and negative values. 相似文献
1000.
Shengzhi Zheng Yudong Song Yiming Li Lidong Sun Bin Hu Mingdong An Yuexi Zhou 《Frontiers of Environmental Science & Engineering》2018,12(6):4
Investigation of demulsification of polybutadiene latex (PBL) wastewater by polyaluminum chloride (PAC) indicated that there was an appropriate dosage range for latex removal. The demulsification mechanism of PAC was adsorption-charge neutralization and its appropriate dosage range was controlled by zeta potential. When the zeta potential of the mixture was between -15 and 15 mV after adding PAC, the demulsification effect was good. Decreasing the latex concentration in chemical oxygen demand (COD) from 8.0 g/L to 0.2 g/L made the appropriate PAC dosage range narrower and caused the maximum latex removal efficiency to decrease from 95% to 37%. Therefore, more accurate PAC dosage control is required. Moreover, adding 50 mg/L sulfate broadened the appropriate PAC dosage range, resulting in an increase in maximum latex removal efficiency from 37% to 91% for wastewater of 0.2 g COD/L. The addition of sulfate will favor more flexible PAC dosage control in demulsification of PBL wastewater.
相似文献