首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   5篇
安全科学   12篇
废物处理   3篇
环保管理   25篇
综合类   10篇
基础理论   10篇
污染及防治   24篇
评价与监测   3篇
社会与环境   1篇
  2023年   3篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   3篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
  1990年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1958年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
61.
62.
63.
Cellular interactions with engineered nanoparticles (NPs) are dependent on many properties, inherent to the nanoparticle (viz. size, shape, surface characteristics, degradation, agglomeration/dispersal, and charge, etc.). Modification of the surface reactivity via surface functionalization of the nanoparticles to be targeted seems to be important. Utilization of different surface functionalization methods of nanoparticles is an emerging field of basic and applied nanotechnology. It is well known that many disease-causing organisms induce host lipids and if deprived, their growth is inhibited in vivo. Amorphous nanosilica (ANS) and amorphous microsilica with nanopores (AMS) were prepared by a combination of wet chemistry and high-energy ball milling. Lipophilic moieties were attached to both ANS and AMS via chemical surface functionalization method. Lipophilic ANS and AMS were found to inhibit the growth of Bombyx mori nuclear polyhedrosis virus (BmNPV) and chicken malarial parasites via absorption of silkworm hemolymph and chicken serum lipids/lipoproteins, respectively, in vivo. Therefore, intelligent surface functionalization of NP is an important concept, and its application in curing chicken malaria and BmNPV is presented here. Surface functionalization method reported in this paper might serve as a valuable technology for treating many diseases where pathogens induce host lipid.  相似文献   
64.
Increasingly, the urgency of reorienting conventional development paradigms to take into account indigenous institutions and their ecological knowledge base is being recognized in both developed and developing countries. Based on a field research in Ghana, this paper discusses the nature and operation of indigenous economic institutions, their ecological knowledge, norms, beliefs, and practices pertaining to sustainable utilization of natural resources and environmental management. The institutions provide a framework of ideas, guiding principles, and practices that could serve as a foundation for endogenous options and broad-based efforts to solving resource and environmental management problems in the developing world. The paper also discusses limitations of indigenous ecological knowledge and practices.  相似文献   
65.
Rapidly growing cities along the Interstate-85 corridor from Atlanta, GA, to Raleigh, NC, rely on small rivers for water supply and waste assimilation. These rivers share commonalities including water supply stress during droughts, seasonally low flows for wastewater dilution, increasing drought and precipitation extremes, downstream eutrophication issues, and high regional aquatic diversity. Further challenges include rapid growth; sprawl that exacerbates water quality and infrastructure issues; water infrastructure that spans numerous counties and municipalities; and large numbers of septic systems. Holistic multi-jurisdiction cooperative water resource planning along with policy and infrastructure modifications is necessary to adapt to population growth and climate. We propose six actions to improve water infrastructure resilience: increase water-use efficiency by municipal, industrial, agricultural, and thermoelectric power sectors; adopt indirect potable reuse or closed loop systems; allow for water sharing during droughts but regulate inter-basin transfers to protect aquatic ecosystems; increase nutrient recovery and reduce discharges of carbon and nutrients in effluents; employ green infrastructure and better stormwater management to reduce nonpoint pollutant loadings and mitigate urban heat island effects; and apply the CRIDA framework to incorporate climate and hydrologic uncertainty into water planning.  相似文献   
66.
In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2–C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013–2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin.

Implications: This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.  相似文献   

67.
It is widely recognized that polychlorinated biphenyls (PCBs) are a dangerous environmental pollutant. Even though the use and production of PCBs have been restricted, heavy industrial use has made them a wide-spread environmental issue today. Dehalogenation using zero-valent metals has been a promising avenue of research for the remediation of chlorinated compounds and other contaminants that are present in the environment. However, zero-valent metals by themselves have shown little capability of dechlorinating polychlorinated biphenyls (PCBs). Mechanically alloying the metal with a catalyst, such as palladium, creates a bimetallic system capable of dechlorinating PCBs very rapidly to biphenyl. This study primarily aims to evaluate the effects of solvent specificity on the kinetics of mono-substituted PCBs, in an attempt to determine the mechanism of degradation. Rate constants and final byproducts were determined for the contaminant systems in both water and methanol, and significant differences in the relative rates of reaction were observed between the two solvents.  相似文献   
68.
Recent severe drought events have occurred over the Ogallala Aquifer region (OAR) during the period 2011–2015, creating significant impacts on water resources and their use in regional environmental and economic systems. The changes in terrestrial water storage (TWS), as indicated by the Gravity Recovery and Climate Experiment (GRACE), reveals a detailed picture of the temporal and spatial evolution of drought events. The observations by GRACE indicate the worst drought conditions occurred in September 2012, with an average TWS deficit of ~8 cm in the northern OAR and ~11 cm in the southern OAR, consistent with precipitation data from the Global Precipitation Climatology Project. Comparing changes in TWS with precipitation shows the TWS changes can be predominantly attributable to variations in precipitation. Power spectrum and squared wavelet coherence analysis indicate a significant correlation between TWS change and the El Nino‐Southern Oscillation, and the influence of equatorial Pacific sea surface temperatures on TWS change is much stronger in the southern OAR than the northern OAR. The results of this study illustrate the value of GRACE in not just the diagnosis of significant drought events, but also in possibly improving the predictive power of remote signals that are impacted by nonregional climatic events (El Nino), ultimately leading to improved water resource management applications on a regional scale. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
69.
Population viability analysis (PVA) is a powerful conservation tool, but it remains impractical for many species, particularly species with multiple, broadly distributed populations for which collecting suitable data can be challenging. A recently developed method of multiple-population viability analysis (MPVA), however, addresses many limitations of traditional PVA. We built on previous development of MPVA for Lahontan cutthroat trout (LCT) (Oncorhynchus clarkii henshawi), a species listed under the U.S. Endangered Species Act, that is distributed broadly across habitat fragments in the Great Basin (U.S.A.). We simulated potential management scenarios and assessed their effects on population sizes and extinction risks in 211 streams, where LCT exist or may be reintroduced. Conservation populations (those managed for recovery) tended to have lower extinction risks than nonconservation populations (mean = 19.8% vs. 52.7%), but not always. Active management or reprioritization may be warranted in some cases. Eliminating non-native trout had a strong positive effect on overall carrying capacities for LCT populations but often did not translate into lower extinction risks unless simulations also reduced associated stochasticity (to the mean for populations without non-native trout). Sixty fish or 5–10 fish/km was the minimum reintroduction number and density, respectively, that provided near-maximum reintroduction success. This modeling framework provided crucial insights and empirical justification for conservation planning and specific adaptive management actions for this threatened species. More broadly, MPVA is applicable to a wide range of species exhibiting geographic rarity and limited availability of abundance data and greatly extends the potential use of empirical PVA for conservation assessment and planning.  相似文献   
70.
Mayer, Timothy D. and Seth W. Naman, 2011. Streamflow Response to Climate as Influenced by Geology and Elevation. Journal of the American Water Resources Association (JAWRA) 47(4):724‐738. DOI: 10.1111/j.1752‐1688.2011.00537.x Abstract: This study examines the regional streamflow response in 25 predominately unregulated basins to warmer winter temperatures and snowpack reductions over the last half century in the Klamath Basin of California and Oregon. Geologic controls of streamflow in the region result in two general stream types: surface‐dominated and groundwater‐dominated basins. Surface‐dominated basins were further differentiated into rain basins and snowmelt basins on the basis of elevation and timing of winter runoff. Streamflow characteristics and response to climate vary with stream type, as discussed in the study. Warmer winter temperatures and snowpack reductions have caused significantly earlier runoff peaks in both snowmelt and groundwater basins in the region. In the groundwater basins, the streamflow response to changes in snowpack is smoothed and delayed and the effects are extended longer in the summer. Our results indicate that absolute decreases in July‐September base flows are significantly greater, by an order of magnitude, in groundwater basins compared to surface‐dominated basins. The declines are important because groundwater basins sustain Upper Klamath Lake inflows and mainstem river flows during the typically dry summers of the area. Upper Klamath Lake April‐September net inflows have decreased an estimated 16% or 84 thousand acre‐feet (103.6 Mm3) since 1961, with the summer months showing proportionately more decline. These changes will exacerbate water supply problems for agriculture and natural resources in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号