首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3526篇
  免费   40篇
  国内免费   220篇
安全科学   108篇
废物处理   205篇
环保管理   309篇
综合类   700篇
基础理论   807篇
环境理论   2篇
污染及防治   1177篇
评价与监测   251篇
社会与环境   198篇
灾害及防治   29篇
  2023年   23篇
  2022年   78篇
  2021年   49篇
  2020年   30篇
  2019年   41篇
  2018年   127篇
  2017年   55篇
  2016年   78篇
  2015年   90篇
  2014年   104篇
  2013年   282篇
  2012年   108篇
  2011年   171篇
  2010年   145篇
  2009年   166篇
  2008年   178篇
  2007年   201篇
  2006年   148篇
  2005年   123篇
  2004年   155篇
  2003年   146篇
  2002年   132篇
  2001年   250篇
  2000年   153篇
  1999年   80篇
  1998年   44篇
  1997年   50篇
  1996年   35篇
  1995年   40篇
  1994年   47篇
  1993年   41篇
  1992年   30篇
  1991年   37篇
  1990年   28篇
  1989年   32篇
  1988年   20篇
  1987年   17篇
  1986年   18篇
  1985年   15篇
  1984年   18篇
  1983年   23篇
  1982年   22篇
  1981年   17篇
  1980年   11篇
  1979年   13篇
  1978年   12篇
  1977年   8篇
  1975年   12篇
  1973年   9篇
  1972年   10篇
排序方式: 共有3786条查询结果,搜索用时 375 毫秒
981.
3BER-S工艺用于再生水深度脱氮同步去除PAEs的可行性   总被引:2,自引:2,他引:0  
为了考察三维电极生物膜硫自养耦合工艺(3BER-S)对再生水进行深度脱氮同步去除邻苯二甲酸酯(PAEs)的可行性,基于3BER-S反应器内已挂膜活性炭填料静态吸附PAEs能力测定和动态反硝化脱氮同步除PAEs运行结果,分析了3BER-S反应器同步脱氮去除PAEs的工艺特性和作用机制.结果表明,挂膜活性炭填料对邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基)己酯(DEHP)的平均吸附去除率分别为85.84%、97.12%,平衡吸附容量为0.142 6mg·g-1、0.162 mg·g-1,达到吸附饱和的时间分别为120 min、60 min;PAEs对3BER-S反硝化系统脱氮效果影响不明显,加入PAEs前后反应器出水TN的浓度在1~2 mg·L-1之间,TN的平均去除率达到了94%以上;3BER-S反硝化系统对PAEs有较强的去除能力,出水中DBP和DEHP的浓度在0~6μg·L-1范围内、去除率均在96%以上;3BER-S对PAEs的去除是吸附、生物降解和电化学协同作用结果.模拟污水厂二级出水经过3BER-S工艺处理后,DBP和DEHP的浓度满足《城市污水再生利用地下水回灌水质标准》(GB/T 19772-2005)所规定的限值.  相似文献   
982.
Alternative splicing (AS) is an important part of regulation of eukaryotic gene expression. BAK1 (Brassinosteroid insensitive1-associated receptor kinase 1) is a specific type of plant serine/threonine protein kinases, and can regulate growth and development and natural immunization. To reveal the responses of sugarcane BAK1 gene to the adverse environment, a ScBAK1 gene and its alternative spliceosome, termed ScBAK1 (GenBank accession number: KP032226) and ScBAK1 S1 (GenBank accession number: KP032227), were cloned from leaf cDNA of Yacheng 05-179 utilizing the methods of electronic cloning and RT-PCR. The open reading frame (ORF) length of ScBAK1/ScBAK1 S1 gene was 1 860bp/1 770bp, encoding 619/589 amino acids residues. The predicted molecular weight of the protein was 69.28 kDa/ 65.76 kDa. Both proteins were located in plasma membrane, estimated as acid, hydrophikic and secretive proteins. Random coil and alpha helix gave priority to extended strand in their secondary structure without beta turn. The most important protein function was cell envelope, secondly biosynthesis of amino acids and cofactors. Real-time quantitative PCR analysis revealed that the expression of sugarcane ScBAK1 S1 gene exhibited the reduced expression trend under smut fungus stress and various abiotic exogenous stresses, including SA, CuCl2, PEG, ABA, NaCl and JA, while the expression of ScBAK1 gene was induced by SA, CuCl2, PEG, NaCl and smut fungus stresses. The phenomenon showed that the absent sequences or amounts of ScBAK1 S1 gene plays a key role in the response of ScBAK1 to the stress of sugarcane smut fungus, osmotic stress and cell growth. The differential expression of ScBAK1 and ScBAK1 S1 lays a foundation for further research on the function of ScBAK1 gene under biotic and abiotic stress.  相似文献   
983.
Nucleic acids and their analogues are getting more and more attention. Metal-mediated base pairs as a kind of simple and functionalized nucleic acids in special positions have widened the scope of application of functional nucleic acids and their analogues. In this type of base pairs, the representative is the interaction between metal ions and pyrimidine bases, especially the research on thymine-Hg2+-thymine (T-Hg2+-T) and cytosine-Ag+-cytosine (C-Ag+-C) base pairs. This review summarizes the structure and mechanism of metal-mediate pyrimidine base pairs as well as the application in the biochemical analysis. It explores the mode and ratio of coordination between metal ions and base pairs, the effects on the stability of DNA helical structure, the related crystal structure and the three-dimensional configuration information in the DNA helix. The analytical application mainly includes various probes of metal ions, small molecules, protein and the detection of single nucleotide polymorphism. Among them the most widely used metal ions detection, and its combination with spectrum technology, visualization and amplification technology greatly promoted the rapid development of sensitive detection technology. In further studies, it is necessary to reveal the mechanism of interaction between T-Hg2+-T and C-Ag+-C, and more attention should be paid to combining of T-Hg2+-T and C-Ag+-C base pairs with other new technologies. The scope of practical application should also be further extended.  相似文献   
984.
Oil pollution is one of the major factors causing environmental deterioration. Bioremediation of oil contaminated environments by microorganisms attracts much research attention. This study aimed to screen efficient oil-degrading bacteria from oil contaminated soil and analyze their characteristics and catabolic genes. Oil-degrading bacteria were screened from oil contaminated soil in minimal medium containing crude oil and identified by morphological, physiological and biochemical characteristics and 16S rDNA sequence analysis. Their growth and degradation characteristics were studied with ultraviolet spectroscopy and GC-MS analysis. The surfactant production was studied by adopting culture method. The major oil-degrading related genes were detected by t he PCR a mplification. As a result, t hree oil-degrading bacteria strains named KB1, 2182 and JC3-47 were isolated from the oil contaminated soil samples. The strains could use crude oil as the sole carbon source to degrade oil with a degrading rate of 41.02%, 32.26% and 55.90%, respectively, when cultured in minimal medium containing crude oil for 3 days. The bacteria were identified to belong to genus Rhodococcus. With 100% similarity of 16S rDNA sequences of the three strains with known ones of Rhodococcus, KB1 was preliminarily identified as Rhodococcus erythropolis, 2182 as Rhodococcus equi, and JC3-47 as Rhodococcus qingshengii. They grew well at 10-50 °C, with the initial pH of 3-9 and the NaCl concentration of 0-5%. The optimal temperature for bacterial growth was 35 °C, 35 °C and 30 °C respectively. KB1 and 2182 could grow at pH 2 and 9.0% of NaCl. The bacteria grew well in broth containing different organic substrates as sole carbon source, such as n-dodecane, n-octadecane, benzene, methylbenzene, xylene and naphthaline. KB1 and JC3-47 could grow well in broth containing pyrene. GC-MS analysis revealed that the bacteria could effectively degrade medium- and long-chain alkane components in crude oil. The bacteria produced biosurfactants and decreased the surface tension of the culture broth. They also showed adhesion activities to n-hexadecane. The oil-degrading related genes such as alkane monooxygenase, aromatic-ring-hydroxylating dioxygenase and catechol dioxygenase genes were detected in all the three strains. Besides, biphenyl dioxygenase genes were detected in KB1 and 2182. The isolated Rhodococcus spp. strains could effectively degrade petroleum hydrocarbons with high adaptabilities to extreme environments such as high salt and low temperature. They are supposed to be applied broadly in the bioremediation of oil contaminated soil in such environments.  相似文献   
985.
The secondary tropical forests in southern China have suffered from frequent human disturbance and increasing high N deposition. In order to explore the nutrient limitation status in secondary tropical forests of South China, this 3-year field experiment of nitrogen (+N) and phosphorus (+P) addition investigated nitrogen (N) and phosphorus (P) concentrations of the aboveground tissue (leaf and branch) of two widely distributed understory native species Clerodendrum cyrtophyllum and Uvaria microcarpa in a secondary tropical forest of South China. The results showed that: 1) the N and P concentrations of the two species were significantly different (P < 0.001); N and P concentrations of different tissues in the same species were different; N&P addition greatly affected N and P concentrations in branch rather than new leaf and older leaf. 2) +N treatment had no significant effect on N or P concentrations of either species, but significantly decreased N:P ratios (P = 0.001), at the level of 9% for C. cyrtophyllum and 50% for U. microcarpa, respectively. 3) +P treatment had no significant effect on tissue N concentrations, but significantly increased plant P concentrations (P < 0.001), at 54% for C. cyrtophyllum and 88% for U. microcarpa, respectively; +P treatment significantly decreased plant N:P ratios (P < 0.001), at 28% and 60%, respectively. 4) The alterations of P concentrations of two species had significantly negative correlations with N:P alterations under +N/+P treatment (P < 0.001), suggesting that the alteration of P concentrations in plant tissue was the major driver for N:P alteration. Our results show that N and P addition would affect tissue N and P concentrations of the two species, with +P treatment having relatively greater effect on nutrient concentrations than +N treatment; the branch is more sensitive than new or older leaf in response to nutrient addition. Therefore, P availability may be the limiting factor for plant growth in the tropical forests.  相似文献   
986.
Land use conversion is an important factor influencing the carbon gas exchange between land and atmosphere. The effect of land use conversion on soil organic carbon mineralization and microbial function is important for soil organic carbon sequestration and stability. This research studied the effects of land use conversion on soil chemical properties, organic carbon mineralization and microbial community structure after two years of conversion from double rice cropping (RR) to maize-maize (MM) and soybean-peanut (SP) double cropping systems in southern China. The results showed that soil pH significantly decreased by 0.50 (MM) and 0.52 (SP, P = 0.002), and dissolved organic carbon significantly increased by 23%- 35% (P = 0.016). No significant difference was found in soil organic carbon mineralization rate with the land use conversion, though the accumulated mineralization decreased after 13 days of incubation (P = 0.019). Land use conversion from paddy to upland significantly changed soil microbial community structure. The total PLFAs, bacterial, gram-positive bacterial (G+), gram-negative bacterial (G-) and actinomycetic PLFAs decreased significantly (P < 0.05), the ratio of fungal PLFAs to bacterial PLFAs (F/B) increased significantly (P = 0.006). But no significant differences in microbial groups were found between MM and SP. The accumulated mineralization at the beginning period of the incubation were significantly positively correlated with soil actinomycetic PLFAs (P = 0.034). After 13 days of incubation, soil F/B showed a positive correlation with the accumulated mineralization (P = 0.004). However, soil microbial community structure(P = 0.014)and total PLFAs(P = 0.033)showed a positive correlation with the accumulated mineralization after 108 days of incubation. Our results indicated that after conversion from paddy soils to drained soils, soil pH and total nitrogen are the key factors regulating the variations in soil microbial community structure and biomass, and then influencing soil organic carbon mineralization.  相似文献   
987.
This study aimed to understand the soil fauna characteristics during the litter decomposition process of perennial herb Deyeuxia arundinacea. The litters were put in 6-, 30-, and 260-mesh litterbags to investigate their mass loss and the dynamics of soil faunal community during Aug. 2013 to Jul. 2014. Faster decomposition rate of Deyeuxia arundinacea in different meshes was found in the early period than in mid- and end-periods. Among different mesh sizes, 6-mesh had the fastest decomposition rate, followed by 30-mesh and 260-mesh. A total of 2218 individuals of soil fauna were obtained in different meshes, with 958, 737 and 523 individuals in 30-, 260- and 6-mesh respectively. Oribatida and Poduridae were the dominant groups, accounting for 73.22% of total individuals. The soil animal individual and group densities shared a very similar trend among the decomposition bags of three aperture sizes, all with obvious characteristics of seasonal dynamic distribution. During the 12 months of decomposition, the density of soil animal groups did not show significant difference between the 6 mesh and 260 mesh decomposition bags except for May. Correlation analysis showed that the group density was highly significantly correlated with average monthly temperature and rainfall, and the individual density significantly correlated with the average monthly temperature. The results indicated that the structure and diversity of soil fauna community of Deyeuxia arundinacea are influenced by hydrothermal conditions. The findings help in understanding the effect of soil fauna to perennial herb litter decomposition.  相似文献   
988.
Micro-organism with efficient desulfurization performance is a key factor in the biological desulfurization technology. This study aimed to seek such a sulfur-oxidizing strain and understand its desulfurization mechanism. Wastewater in a sewage station of natural gas purification plant was used to screen the sulfide-oxidizing strain, and to identify it based on sequence similarity analysis of 16S rDNA and the morphological characteristics. Thiosulfate was used as substrate for investigating the sulfur oxidation performance and salinity tolerance; the OD600, content change of thiosulfate, sulfate, sulfur, pH and total alkalinity in the cultural system were also investigated. The strain DS-B was found to share the highest sequence similarity with Thioalkalivibrio thiocyanoxidans ARh2, therefore determined as Thioalkalivibrio. At the optimum temperature of 35 °C for growth and degradation, the removal efficiency of thiosulfate could reach 98.7% after 7 days. Strain DS-B had strong resistance to thiosulfate, and the optimal concentration of S2O32- was 2 × 104 mg/L. The analysis for sulfur oxides showed that it could oxidize thiosulfate by the pathway of S2O32-→SO42- / S2O32- → S → SO42-. Therefore the strain DS-B is a sulfur-oxidizing bacterium with great application prospect for its strong salt tolerance and conspicuous removal capability for thiosulfate.  相似文献   
989.
990.
The physical properties of gas and water are important in usage of gas reservoirs with water and water-soluble gas reservoirs. According to the Petroleum and Natural Gas Industry Standards SY/T5542-2009 of the People's Republic of China, by applying the crude oil multistage degassing method from the “Test Method for Reservoir fluid Physical Properties” and the formation water high-pressure property testing method described in the “Theory and Application of Reservoir Fluid Phase”, this investigation employed a Ruska 2370–601A phase analyzer to obtain data regarding gas–water ratios, water volume factors, compressibility coefficients, and densities. The results showed curve trends with changes in the temperature and pressure. The gas–water ratio was compared to the gas content of subsurface samples from the X water-soluble gas reservoir, suggesting that these findings might help in the analysis of water-soluble gas reservoirs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号