首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   2篇
  国内免费   5篇
安全科学   3篇
废物处理   17篇
环保管理   22篇
综合类   14篇
基础理论   18篇
环境理论   1篇
污染及防治   55篇
评价与监测   20篇
社会与环境   13篇
灾害及防治   1篇
  2023年   5篇
  2022年   33篇
  2021年   12篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   10篇
  2016年   9篇
  2014年   9篇
  2013年   9篇
  2012年   5篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1984年   1篇
排序方式: 共有164条查询结果,搜索用时 250 毫秒
91.
Inland (floodplain) fisheries remain the most important contributor to fish production in Bangladesh. They have in the past been administered to generate government revenue without due concern for sustainability or equity. Community Based Fisheries Management (CBFM) is a possible solution and was tested in 19 waterbodies (rivers and beels) during 1996-2000. The outcomes so far are assessed with respect to social, institutional, and physical context, and the interactions that arose in establishing CBFM. The lessons drawn are that: it was essential that communities obtained rights over the fisheries, strong facilitation was necessary, taking up visible resource management actions greatly helped, success was more likely in homogeneous communities, external threats were a strong limiting factor, clear boundaries and small fisheries were not so critical, and new institutions could be built with as much ease (or difficulty) as modifying existing ones. Effective well-defined partnerships of NGOs and government were not easy to establish but were sufficiently beneficial that in several locations new community institutions for fisheries management were established. This is a slow process, the sustainability of local management institutions is not yet established, although they continued during an interim period without funding, further phased support is planned to strengthen these organizations and to generate evidence of impacts and momentum to influence wider fisheries policy in and beyond Bangladesh.  相似文献   
92.
Arsenic contaminating groundwater in Bangladesh is one of the largest environmental health hazards in the world. Because of the potential risk to human health through consumption of agricultural produce grown in fields irrigated with arsenic contaminated water, we have determined the level of contamination in 100 samples of crop, vegetables and fresh water fish collected from three different regions in Bangladesh. Arsenic concentrations were determined by hydride generation atomic absorption spectrophotometry. All 11 samples of water and 18 samples of soil exceeded the expected limits of arsenic. No samples of rice grain (Oryza sativa L.) had arsenic concentrations more than the recommended limit of 1.0 mg/kg. However, rice plants, especially the roots had a significantly higher concentration of arsenic (2.4 mg/kg) compared to stem (0.73 mg/kg) and rice grains (0.14 mg/kg). Arsenic contents of vegetables varied; those exceeding the food safety limits included Kachu sak (Colocasia antiquorum) (0.09-3.99 mg/kg, n=9), potatoes (Solanum tuberisum) (0.07-1.36 mg/kg, n=5), and Kalmi sak (Ipomoea reptoms) (0.1-1.53 mg/kg, n=6). Lata fish (Ophicephalus punctatus) did not contain unacceptable levels of arsenic. These results indicate that arsenic contaminates some food items in Bangladesh. Further studies with larger samples are needed to demonstrate the extent of arsenic contamination of food in Bangladesh.  相似文献   
93.
Thatch development in intensively managed turf sites may cause environmental concerns for greater sorption or leaching of applied chemicals in terrestrial ecosystems. To determine the adsorption potential of Carbaryl (1-Napthyl N-methylcarbamate), 2,4-D (2,4-dichloro-phenoxyacetic acid), and Triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) in turf ecosystems, composite thatch and underlying soil samples from three-and six-year-old stands of cool-season Southshore creeping bentgrass (Agrostis palustris Huds.) and warm-season Meyer zoysiagrass (Zoysia japonica Steud.) were collected. The samples were processed and analyzed for total organic carbon (COrg); extractable (CExt), humic (CHA) and fulvic acid (CFA); anthrone reactive nonhumic carbon (ARC) fractions; and CHA and CFA associated iron (Fe) contents. Pesticide adsorption capacity (Kf) and intensity (1/n), organic carbon partition coefficient (KOC) and Gibbs free energy change (deltaG) were calculated for thatch materials and the underlying soils using a modified batch/flow technique. Both bentgrass (BT) and zoysiagrass thatch (ZT) contained a greater concentration of CExt, CFA, CHA, and ARC than the respective soils (BS and ZS). The CExt, CFA, CHA, and ARC concentration was higher in BT compared with ZT. The BT contained a greater concentration of bound Fe in both CFA and CHA fractions than in BS, whereas ZT had more bound Fe in CHA fraction than in ZS. On average, the BT had a greater concentration of bound Fe in CExt, CFA, and CHA fractions than in the ZT. Among the pesticides, Carbaryl had higher Kf and 1/n values than 2,4-D and Triclopyr for both thatch and soil. Although the KOC and deltaG values of Carbaryl were higher in both BT and ZT than in the underlying soils, the KOC and deltaG values of 2,4-D were significantly higher in BS and ZS than in the overlying thatch materials. The 2,4-D and Triclopyr had higher leaching indices (LI) than Carbaryl for both BT and ZT materials than the respective soils. The Carbaryl, however, had a higher LI for soils than for thatch materials. Averaged across thatch materials and soils, COrg accounted for 96, 85, and 84% variations in Carbaryl, 2,4-D, and Triclopyr adsorption, respectively. Among the COrg fractions, lignin followed by CFA and CHA accounted for greater adsorption of pesticides, especially Carbaryl. The concentration of CHA and CFA bound Fe did not correlate with Kf and 1/n values of pesticides.  相似文献   
94.
Groundwater contaminated with arsenic (As), when extensively used for irrigation, causes potentially long term detrimental effects to the landscape. Such contamination can also directly affect human health when irrigated crops are primarily used for human consumption. Therefore, a large number of humans are potentially at risk worldwide due to daily As exposure. Numerous previous studies have been severely limited by small sample sizes which are not reliably extrapolated to large populations or landscapes. Human As exposure and risk assessment are no longer simple assessments limited to a few food samples from a small area. The focus of more recent studies has been to perform risk assessment at the landscape level involving the use of biomarkers to identify and quantify appropriate health problems and large surveys of human dietary patterns, supported by analytical testing of food, to quantify exposure. This approach generates large amounts of data from a wide variety of sources and geographic information system (GIS) techniques have been used widely to integrate the various spatial, demographic, social, field, and laboratory measured datasets. With the current worldwide shift in emphasis from qualitative to quantitative risk assessment, it is likely that future research efforts will be directed towards the integration of GIS, statistics, chemistry, and other dynamic models within a common platform to quantify human health risk at the landscape level. In this paper we review the present and likely future trends of human As exposure and GIS application in risk assessment at the landscape level.  相似文献   
95.
Cities in Bangladesh produce large amounts of solid waste (SW) through various human activities which severely pollutes our native environment. As a result, SW pollutes the three basic environmental elements (air, water, and soil) by increasing pathogenic microbial load, which might be hazardous to public health directly or indirectly. In this study, we conducted 30 samples (i.e., soil, water, and air) collected from areas where municipal solid wastes are dumped (Tangail Sadar Upazila, Bangladesh). All the samples were analyzed to assess bacteriological quality for presumptive viable and coliform count using different agar media. We performed serial dilution 10−3–10−10 times for soil and water samples, and the diluted samples were spread on Mac-Conkey agar and nutrient agar plates. For the air sample, the sterile media containing petri-dish was placed adjacent to the dumpsite of the municipal waste and kept for an hour. Then all the samples were incubated at 37°C overnight for total viable count (TVC) and total coliform count (TCC). Biochemical tests and PCR were performed for the identification of these microorganisms. The antibiogram study was performed to reveal their (identified bacteria) susceptibility against clinically used antibiotics according to the standard disk diffusion technique. The highest bacterial loads were found in the air: TVC 3.273 × 103 and TCC 1.059 × 103 CFU/plate; tube-well water: TVC 8.609 × 103, and TCC 8.317 × 103 CFU/mL; in surface water: TVC 6.24 × 1013 CFU/mL and TCC 2.2 × 1012 CFU/mL; in soil: TVC 2.88 × 1011 and TCC 1.02 × 1011 CFU/g, respectively. Microbes from SW can be transmitted through air, dust particles, or flies, and here we found an average of 1120 microbes spread over 63.61 cm2 area per hour. Eight bacterial isolates (Pseudomonas spp., Klebsiella spp., E. coli, Proteus spp., V. cholera, Salmonella spp., Shigella spp., and Vibrio spp.) were identified by the biochemical test. Among them, E. coli and Shigella spp. were further ensured by PCR targeting bfpA and ipaH genes. Antibiotic susceptibility test results showed that E. coli isolates were highly resistant to erythromycin (80%); Shigella spp. were resistant to nalidixic acid (90%), whereas Salmonella spp. was found resistant to kanamycin (90%). Vibrio spp. were also resistant to azithromycin (80%) and erythromycin (80%), which should be a great concern for us. A semi-structured survey revealed that 63% of respondents suffered from different clinical conditions (intestinal diseases) due to SW pollution. So, steps should be taken to improve the proper management and disposal of solid waste and liquid effluent to save our environment and public health.  相似文献   
96.
● A global snapshot of plastic waste generation and disposal is analysed. ● Effect of plastic pollution on environment and terrestrial ecosystem is reviewed. ● Ecotoxicity and food security from plastic pollution is discussed. Plastic is considered one of the most indispensable commodities in our daily life. At the end of life, the huge ever-growing pile of plastic waste (PW) causes serious concerns for our environment, including agricultural farmlands, groundwater quality, marine and land ecosystems, food toxicity and human health hazards. Lack of proper infrastructure, financial backup, and technological advancement turn this hazardous waste plastic management into a serious threat to developing countries, especially for Bangladesh. A comprehensive review of PW generation and its consequences on environment in both global and Bangladesh contexts is presented. The dispersion routes of PW from different sources in different forms (microplastic, macroplastic, nanoplastic) and its adverse effect on agriculture, marine life and terrestrial ecosystems are illustrated in this work. The key challenges to mitigate PW pollution and tackle down the climate change issue is discussed in this work. Moreover, way forward toward the design and implementation of proper PW management strategies are highlighted in this study.  相似文献   
97.

This study investigated the characteristics of iron corrosion scales in pipes at tube well, overhead tank, and consumers’ end in older untreated water distribution system in Peshawar city, Pakistan. Effect of water quality conditions on corrosion scales and that of scales on drinking water quality in such systems was also assessed by undertaking a comparison with new piped distribution systems. The scales were analyzed for chemical composition and morphology using X-ray diffraction (XRD), inductively coupled plasma (ICP), and a scanning electron microscope (SEM), while water quality was examined for physicochemical and biological characteristics. The main crystalline phases of corrosion scales were goethite, magnetite, siderite, and quartz. From tube well to consumers’ end, goethite increased from 36 up to 48%, quartz declined from 22 to 15%, while magnetite fluctuated and siderite disappeared. Elemental composition of scales showed the deposition of Zn, Al, Mn, Cr, Pb, Cu, As, and Cd with Zn (13.9 g/kg) and Al (3.6 g/kg) in highest proportion. The SEM analysis illustrated the presence of microbial communities indicating the formation of biofilms in the corrosion scales. The significant difference (P <?0.05) in levels of dissolved oxygen (DO), Cl?, SiO44?, electrical conductivity (EC), SO42?, NO3?, alkalinity, hardness, and trace metals between old (DS-O) and new piped systems indicated their role in corrosion scale formation/destabilization and the effect of scale dissolution on water quality. In DS-O, EC, Cu, and Mn were significantly higher (P?<?0.05), whereas turbidity, EC, DO, and SiO44? significantly increased from source to consumers’ end implying a higher dissolution of scales and lowered corrosion rates in DS-O to utilize SiO44? and DO for iron oxidation.

  相似文献   
98.
Environment, Development and Sustainability - The increased demand for foods and commercialization of the commodity markets has resulted in enormous interest in arable land resources, leading to a...  相似文献   
99.
Historically, the biofouling of ships’ hulls has always been considered amongst the oldest mechanisms causing the introduction of marine invasive species. However, in the last few decades, studies have been oriented mainly towards the introduction of non-indigenous species via ballast water, at the expense of biofouling. In this study, an alternative approach that deals with this latter parameter as the main factor of the introduction of marine organisms is proposed. The biofouling surface area of all vessels which have made call at Arzew port in Algeria is calculated over a period of one year (2014). This parameter indicates the importance of the pressure of propagule that corresponds to the successful introduction effort of a species, since it is this submerged surface of the ship that hosts organisms and spreads them all over the world. We associate to each calculated biofouling surface a bioregion of origin, as well as other parameters such as the number of vessels, their maritime routes and the environmental similarity of Arzew port’s seawater and the other different bioregions. We highlight according to the bioregion, the surfaces that constitute a critical risk of the species introduction and those that constitute a minor risk The study showed that over a period of 1 year, 1313 ships from 28 different bioregions that have made call at Arzew port have accumulated a total wet surface corresponding to about nine million square meters. It is worth to mention that this field of research requires special attention from academics as it may lead to more effective methods to prevent future exotic species introductions.  相似文献   
100.
Aquatic floating plants on BioHaven mats were tested for their potential use as a Best Management Practice to be incorporated within existing stormwater detention ponds. Plants were analyzed for their capability to remove nutrient-pollution in parallel with the study of ecological dynamics. Experiments were carried out in cylindrical mesocosms of 5 m diameter and 1.2 m height, above-ground pools with a water volume of 14 m3. The design parameters tested were for 5% and 10% vegetated floating island coverage of the mesocosm, both with and without shoreline plants called littoral zone. This littoral shelf was 0.5 m thick, graded at a downward slope of 1:5 toward the center using loamy soil with low organic matter content, excavated from below turf grass. Endemic plant species were chosen for the experimental location in central Florida based on a wetland identification manual by the Florida Department of Environmental Protection to ensure the study was not compromised by unique climate requirements of the plants. Nutrient and aquatic chemical conditions such as pH, dissolved oxygen, temperature, turbidity, and chlorophyll a were monitored to understand their relationships to the general wetland ecosystem. Real-time polymerase chain reaction analysis identified the microbial activity near the rhizospheric zone. Logistical placement considerations were made using spatial sampling across the horizontal plane of the mesocosms, beneath and around the root zone, to determine if nutrients tend to aggregate around the floating island. This study concluded that the application of floating islands as a stormwater technology can remove nutrients through plant uptake and biological activity. The most cost-effective size in the outdoor mesocosms was 5% surface area coverage of the mat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号