首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
安全科学   1篇
废物处理   4篇
环保管理   14篇
综合类   8篇
基础理论   20篇
污染及防治   25篇
评价与监测   7篇
社会与环境   5篇
  2023年   2篇
  2022年   7篇
  2021年   6篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有84条查询结果,搜索用时 11 毫秒
81.
Peri-urban forest monitoring requires indicators of vegetation damage. An example is the sacred fir (Abies religiosa) forests surrounding Mexico City, which have been heavily exposed to tropospheric ozone, a harmful pollutant, for over 4 decades. We developed a participatory monitoring system with which local community members and scientists generated data on ozone tree damage. Santa Rosa Xochiac rangers (13) used the digital tool KoboToolBox to record ozone damage to trees, tree height, tree ages, tree condition, tree position, and whether the tree had been planted. Thirty-five percent of the trees (n = 1765) had ozone damage. Younger trees had a lower percentage of foliage damaged by ozone than older trees (p < 0.0001), and asymptomatic trees tended to be younger (p < 0.0001). Symptomatic trees were taller than asymptomatic trees of the same age (R2c = 0.43, R2m = 0.27). Involving local communities facilitated forest monitoring and using digital technology improved data quality. This participatory system can be used to monitor forest condition change over time and thus aids restoration efforts driven by government or local communities’ interests, facilitating local decision-making.  相似文献   
82.
Five priority areas of potential impact by contaminants (API) were investigated at the Presidente Bernardes Refinery in Cubatão, São Paulo, Brazil with the following aims: (i) to identify both organic and inorganic contaminants present in soil and groundwater; (ii) to define the environmental conditions relevant for microbial activity at the site and (iii) to evaluate the feasibility of employing natural attenuation for treatment of the hydrocarbon contamination. One area (API 1) was an uncontrolled landfill, where waste materials from the refinery were deposited between 1954 and 1986, and four areas (API 4, 5, 7 and 11) were located in the operational section of the refinery. Soil contamination by regulated BTEX compounds (benzene, toluene, total xylenes) was restricted to two samples from API 1. Nonregulated ethylbenzene was detected in one soil sample from API 4, one from API 5 and two from API 1. No soil contained regulated PAH above threshold levels. Several nonregulated PAHs were found in 6 soil samples from API 1, 3 soil samples from API 4 and 1 soil sample from API 5. Site soils contained very high aluminium concentrations, but metal contamination was restricted to one soil sample from API 1, which contained nickel above threshold limits. BTEX contamination of groundwater was due mostly to benzene. Of the 17 PAH molecules tested, only naphthalene and 2-methylnaphthalene occurred in groundwater. The sum of total BTEX and total PAH exceeded 200 μg/L in only a few monitoring wells in API 4, 5 and 11 and was always below 2.640 μg/L. Be, Cd, Cr, Cu, Hg, Ni, Se, Ag, Tl and Zn were not detected in groundwater, which was contaminated in a few locations by aluminium (mostly below 1 mg/L), lead (<0.066 mg/L) and arsenic (<0.056 mg/L). S, K, Ca, Mg and Fe were present in groundwater in excess of physiological requirements for microbial growth, but low concentrations of N and P could become growth limiting. However, BTEX were efficiently degraded in saturated and unsaturated zone microcosms and nutrient amendments did not stimulate biodegradation rates measurably. The inorganic carbon pool in groundwater was up to one order of magnitude larger than the organic carbon pool. Total inorganic carbon (TIC) in API groundwater exceeded TIC of clean groundwater by factors of 2 (API 4), 6 (API 5, 7 and 11) or 10 (API 1). Most of the inorganic carbon incorporated into groundwater beneath the refinery originated from biodegradation in the unsaturated soil, which contained a microbiota (106 cells/g on average) capable of growth with most of the pure (benzene, toluene, ethylbenzene and xylene) and mixed hydrocarbons tested (diesel oil, gasoline, naphtha, condensate, aromatic residue and fuel oil). A viscous hydrocarbon paste uncovered in API 1 was insoluble in water but dissolved in dichloromethane. Many organic components of this paste were biodegradable as evidenced by weight reduction of the hydrocarbon paste and by the growth of suspended and attached biomass in saturated zone microcosms, where the paste was the only carbon source. This study indicates that monitored natural attenuation may be a technically feasible and efficient means for plume control in API 1, 4 and 5, provided the plumes in API 4 and 5 are not expanding. This technique is not suitable for contaminant reduction in API 11.  相似文献   
83.
Environmental Science and Pollution Research - Biosolids are a by-product of wastewater treatment, and their nutritional composition makes them ideal for fertilizing crops. However, pre-treatments,...  相似文献   
84.

This review summarizes research data on the pharmaceutical drugs used to treat the novel SARS-CoV-2 virus, their characteristics, environmental impacts, and the advanced oxidation processes (AOP) applied to remove them. A literature survey was conducted using the electronic databases Science Direct, Scopus, Taylor & Francis, Google Scholar, PubMed, and Springer. This complete research includes and discusses relevant studies that involve the introduction, pharmaceutical drugs used in the SARS-CoV-2 pandemic: chemical characteristics and environmental impact, advanced oxidation process (AOP), future trends and discussion, and conclusions. The results show a full approach in the versatility of AOPs as a promising solution to minimize the environmental impact associated with these compounds by the fact that they offer different ways for hydroxyl radical production. Moreover, this article focuses on introducing the fundamentals of each AOP, the main parameters involved, and the concomitance with other sources and modifications over the years. Photocatalysis, sonochemical technologies, electro-oxidation, photolysis, Fenton reaction, ozone, and sulfate radical AOP have been used to mineralize SARS-CoV-2 pharmaceutical compounds, and the efficiencies are greater than 65%. According to the results, photocatalysis is the main technology currently applied to remove these pharmaceuticals. This process has garnered attention because solar energy can be directly utilized; however, low photocatalytic efficiencies and high costs in large-scale practical applications limit its use. Furthermore, pharmaceuticals in the environment are diverse and complex. Finally, the review also provides ideas for further research needs and major concerns.

Graphical abstract
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号