首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   0篇
  国内免费   3篇
安全科学   1篇
废物处理   8篇
环保管理   23篇
综合类   18篇
基础理论   31篇
污染及防治   47篇
评价与监测   13篇
社会与环境   2篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   16篇
  2012年   7篇
  2011年   6篇
  2010年   8篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1978年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
排序方式: 共有143条查询结果,搜索用时 31 毫秒
81.

The study examined the impact of raking and fish bioturbation on modulating phosphorus (P) concentrations in the water and sediment under different trophic conditions. An outdoor experiment was set to monitor physicochemical and microbiological parameters of water and sediment influencing P diagenesis. A pilot study with radioactive 32P was also performed under the agency of raking and bacteria (Bacillus sp.). Raking was more effective in release of P under unfertilized conditions by significantly enhancing orthophosphate (35%) and soluble reactive phosphate (31.8%) over respective controls. Bioturbation increased total and available P in sediments significantly as compared to control. The rates of increase were higher in the unfertilized conditions (17.6–28.4% for total P and 12.2 to 23.2% for available P) than the fertilized ones (6.5–12.4% for total P and 9.1 to 15% for available P). The combined effects of raking and bioturbation on orthophosphate and soluble reactive phosphate were also stronger under unfertilized state (54.5 and 81.8%) than fertilized ones (50 and 70%). The tracer signature showed that coupled action of introduced bacteria and repeated raking resulted in 59.2, 23 and 16% higher counts of radioactive P than the treatments receiving raking once, repeated raking and bacteria inoculation, respectively. Raking alone or in sync with bioturbation exerted pronounced impact on P diagenesis through induction of coupled mineralization and nutrient release. It has significant implication for performing regular raking of fish-farm sediments and manipulation of bottom-grazing fish to regulate mineralization of organic matter and release of obnoxious gases from the system. Further, they synergistically can enhance the buffering capacity against organic overload and help to maintain aquatic ecosystem health.

  相似文献   
82.
Acute (96 h) and chronic (21 d) exposures of Daphnia magna neonates were carried out with nano- and micro-sized Ag and CeO(2) particles to assess the influence of both material and size of particles on mortality and moulting. Mortality rates for silver in the acute exposures were: AgNP, 56.7 ± 23.3% at 0.1 mg L(-1) and 100 ± 20% at 1 mg L(-1), and micro-Ag, 13.3 ± 6.7% at 0.1 mg L(-1) and 80 ± 20% at 1 mg L(-1). CeO(2) was not acutely toxic at concentrations up to 10 mg L(-1). Mortality for Ag over 21d at concentrations of up to 0.05 mg L(-1) was low, while mortality of 30% was observed for 0.001 mg L(-1) of nano-Ag. CeO(2), with the exception of the 10 mg L(-1) of nano-CeO(2) (100% mortality by day 7), was non-toxic. Inhibition of moulting and growth in the acute study occurred at toxic concentrations (Ag particles), and at 10 mg L(-1) of nano-CeO(2). The chronic study revealed reduced moulting at 0.001 mg L(-1) of nano-Ag and 0.01 and 0.05 mg L(-1) of both sizes of Ag, but there was no impact on D. magna size, and no effects of CeO(2). The toxicity of nano-CeO(2) may be attributed to reduced feeding and physical interference with the daphnids' carapace, resulting in reduced swimming ability. Our results suggest that Ag NPs in particular have the potential to be harmful to aquatic invertebrates after release into the environment, whereas CeO(2) particles appear to cause little adverse effects, and only at environmentally irrelevant concentrations.  相似文献   
83.
84.
• Simultaneous C & N removal in Methammox occurs at wide C:N ratio. • Biological Nitrogen Removal at wide C:N ratio of 1.5:1 to 14:1 is not reported. • Ammonia removal shifted from mixotrophy to heterotrophy at high C:N ratio. • Acetogenic population compensated for ammonia oxidizers at high C:N ratio. • Methanogens increase the plasticity of nitrogen removers at high C:N ratio. High C:N ratio in the wastewater limits biological nitrogen removal (BNR), especially in anammox based technologies. The present study attempts to improve the COD tolerance of the BNR process by associating methanogens with nitrogen removing bacterial (NRB) populations. The new microbial system coined as ‘Methammox’, was investigated for simultaneous removal of COD (C) and ammonia (N) at C:N ratio 1.5:1 to 14:1. The ammonia removal rate (11.5 mg N/g VSS/d) and the COD removal rates (70.6 mg O/g VSS/d) of Methammox was close to that of the NRB (11.1 mg N/g VSS/d) and the methanogenic populations (77.9 mg O/g VSS/d), respectively. The activities established that these two populations existed simultaneously and independently in ‘Methammox’. Further studies in biofilm reactor fetched a balanced COD and ammonia removal (55%–60%) at a low C:N ratio (≤2:1) and high C:N ratio (≥9:1). The population abundance of methanogens was reasonably constant, but the nitrogen removal shifted from mixotrophy to heterotrophy as the C:N ratio shifted from low (C:N≤2:1) to high (C:N≥9:1). The reduced autotrophic NRB (ammonia- and nitrite-oxidizing bacteria and Anammox) population at a high C:N ratio was compensated by the fermentative group that could carry out denitrification heterotrophically. The functional plasticity of the Methammox system to adjust to a broad C:N ratio opens new frontiers in biological nitrogen removal of high COD containing wastewaters.  相似文献   
85.
Ghosh JP  Taylor KE  Bewtra JK  Biswas N 《Chemosphere》2008,71(9):1709-1717
The potential use of laccase (SP-504) in an advanced oxidation-based treatment technology to remove 2,4-dimethylphenol (DMP) from water was investigated with and without the additive, polyethylene glycol (PEG). The DMP concentration was varied between 1.0 and 5.0 mM. The optimization of pH and enzyme concentration in the presence and absence of PEG was carried out. All experiments were carried out in continuously stirred reactors for 3h at room temperature. The reaction was initiated by adding enzyme to the reaction mixture. For more than 95% removal of DMP, the presence of PEG reduced the inactivation of enzyme so that the required enzyme concentrations were reduced by about 2-fold compared to the same reactions in the absence of PEG. Finally, the PEG concentrations were optimized to obtain the minimum dose required. For higher substrate concentrations, the availability of oxygen was insufficient in achieving 95% or more removal. Therefore, the effect of increasing dissolved oxygen at higher substrate concentration was investigated. The laccase studied was capable of efficiently removing DMP at very low enzyme concentrations and hence shows great potential for cost-effective industrial applications.  相似文献   
86.
87.
Scrubbers are used as particulate emission control devices with the increase in stringency of old regulations or promulgation of new regulations. Scrubbing of fly ash in a novel dual flow scrubber, i.e., one water filled bubble section and one section with water-spray, is reported in this article. The presented system included a tapered section in order to achieve the bubble regime. On the other hand, a two-phase critical flow atomizer was used for the generation of spray regime with high degree of spray uniformity. Experiments were carried out for studying the behavior of the system in terms of various pertinent variables. The fly ash removal mechanism was explained in terms of various physical interactions. Electrostatic effect was found to have an insignificant influence on the collection efficiency of fly ash. The removal efficiency was found to decrease with the increase in inlet fly ash loading in the bubble section while it was increased in the spray section. A compromise must, therefore, be struck while operating the scrubber for achieving the desired performance. The effects of other operating variables studied on the removal efficiency remained similar in the regimes under investigation. The combined effect was, however, that the spray regime was dominating. Experimentation also revealed that the bubble section collected particles down to 20 microm size. Detailed experimentation revealed that almost 100% removal efficiency (zero penetration) of fly ash could be achieved in the dual flow scrubber at a QL/QG ratio of 3.0 m3/1000 ACM (actual cubic meter). Almost zero penetration of fly ash particles, clearly demonstrated that the dual flow scrubber with its staging operations met with the stricter emission regulations for particulate matter. Selection of any particulate control device is intrinsically related to the performance as a function of various pertinent variables of the system. Correlations were, therefore, put forward for the prediction of the performances of the bubble and the spray sections in terms of various pertinent variables of the system. The overall removal efficiency achievable in the dual flow scrubber was predicted with the help of these correlations. The predicted values were in excellent agreement with the experimental values (well within +/-5.0% deviation). Comparison of the performance of the present system with the existing systems indicated that the bubble and spray sections either alone or in combination (as in a dual flow scrubber), was energy and efficiency-wise much better than the existing systems. The novelty of the system is also described.  相似文献   
88.
Zirconium was loaded onto orange waste, a cheap and available agricultural waste in Japan, to investigate the feasibility of its utilization for phosphorus recovery from secondary effluent and side-stream liquid, which contain 5.9 and 68.2 mg/dm3 phosphorus, respectively. The phosphorus removal from side-stream liquid by using zirconium-loaded saponified orange waste (Zr-SOW) gel increased with an increasing solid/liquid ratio, and it was found that Zr-SOW gel showed better performance than zirconium ferrite. The prepared adsorbent was effective for phosphorus removal and exhibited a reasonably high adsorption capacity, twice than that of zirconium ferrite. The secondary effluent was treated in a column packed with Zr-SOW gel, and an dynamic adsorption capacity of 1.3 mol-P/kg was attained. The adsorbed phosphorus from the column was successfully eluted as a concentrated form by using a small amount of 0.2 M NaOH. Throughout the elution process, zirconium was not leaked from the adsorption gel.  相似文献   
89.
ABSTRACT

The use of activated carbon fiber (ACF) filters for the capture of particulate matter and elemental Hg is demonstrated. The pressure drop and particle collection efficiency characteristics of the ACF filters were established at two different face velocities and for two different aerosols: spherical NaCl and combustion-generated silica particles. The clean ACF filter specific resistance was 153 kg m-2 sec-1. The experimental specific resistance for cake filtration was 1.6 × 106 sec-1 and 2.4 × 105 sec-1 for 0.5- and 1.5-μm mass median diameter particles, respectively. The resistance factor R was approximately 2, similar to that for the high-efficiency particulate air filters. There was a discrepancy in the measured particle collection efficiencies and those predicted by theory. The use of the ACF filter for elemental Hg capture was illustrated, and the breakthrough characteristic was established. The capacity of the ACF filter for Hg capture was similar to other powdered activated carbons.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号