首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   7篇
  国内免费   1篇
安全科学   1篇
废物处理   13篇
环保管理   10篇
综合类   4篇
基础理论   18篇
污染及防治   69篇
评价与监测   5篇
社会与环境   6篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   21篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1997年   1篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有126条查询结果,搜索用时 234 毫秒
111.
Biosludge was obtained from a petrochemical industry's biological wastewater treatment plant. Zinc chloride (ZnCl2) was used as a sludge activation agent during the pyrolytic process. Scanning electron microscope (SEM) image photographs, element composition, surface functional group, and pore structure were analyzed for the sludge adsorbent characteristics. Results indicated the proper ZnCl2-immersed concentration, pyrolytic temperature, and time could produce adsorbent from the biosludge. The optimal conditions for a larger surface area adsorbent were 3 M ZnCl2-immersed sludge pyrolyzed at 600 degrees C for 30 min and washed with 3 N hydrochloric acid (HCl) solution and distilled water. The predominant pore size of the sludge adsorbent was the mesopore.  相似文献   
112.
This study investigated the relationships between meteorological data, pollution sources, and receptors over northern Taiwan. During the intensive sampling period in summer 1992, the weather was controlled predominantly by a Pacific subtropical high and by Typhoon Mark. During the other intensive sampling period in winter 1993, while a cold frontal system approached Taiwan, the northeasterly winds prevailed most of the time. The local circulation such as land-sea breeze only developed under weak synoptic environment. Particle concentrations and element composition in winter were higher than in summer. This can be attributed to the high convection of air mass, which leads to the vertical dispersion of pollutants in summer. In addition to the subtropical high pressure, typhoons are frequently accompanied with high-wind speeds and unstable weather conditions that also dilute and eliminate the pollutants. In winter, the prevailing northeasterlies might carry pollutants from Midland China. Furthermore, the anticyclone system develops a stagnant condition that easily leads to pollutant accumulation. In this case, the wind direction affected the source contribution of the receptor and the PM10 displays a higher correlation with coarse and fine particulate than meteorological parameters in summer. In addition, the mixing height shows a high correlation with PM10 in winter.  相似文献   
113.
Methyl tert-butyl ether (MTBE) has been used as a fuel additive at levels of 2–11% in Taiwan for the past decade. The purpose of this additive is to enhance the octane, replace the use of lead-based anti-knock gasoline additives and reduce aromatic hydrocarbons. However, it is possible that oxygenated fuel has a potential health impact. To determine the air quality impact of MTBE, measurements were made of ambient MTBE and other gasoline constituents at a service station. Additionally, environmental conditions (wind speed, wind direction, and temperature, etc.) that could affect concentrations of emission constituents were measured. Gas samples were analyzed for target MTBE and volatile organic compounds, e.g., benzene and toluene. Ambient samples were collected using Tenax adsorbent tubes for mass spectrometric analysis at a service station located in Changhua County, Taiwan. The resulting measured ambient air concentrations were compared with Taiwans regulatory standards for hazardous air pollutants. Subsequently, the factors controlling the formation of high-VOC levels at the service station and in the residential neighborhoods were identified. Additionally, the results can provide the Environmental Protection Agency (EPA) of Taiwan with useful information and prompt them to mandate this gas service station to install a refueling vapor recovery system.  相似文献   
114.
Analysis of respirometric graphs for system diagnosis has recently drawn much attention due to the nature of the test being a fast method with reliable oxygen uptake (Ou) data. In this study, a new graphical analysis procedure is proposed, using the oxygen uptake rate (OUR) vs. Ou respirogram because of its distinct characteristics that provides easy visual inspection. The OUR plot is typically divided into two respiration phases, and each one of these phases can be simulated by a previously derived analytical equation. Based on the 2-phase model, five characteristic parameters (CPs) were derived for the OUR respirogram. Mathematically the 5 CPs can be related to the system parameters (SPs), including the four Monod kinetic parameters and two operating conditions (initial substrate and biomass concentration). Sensitivity analyses were then conducted to assess the 5 CPs for the level of effect caused by system parameters (SPs). This study also conducted respirometric tests under batch operation to evaluate the applicability of the graphical analysis method. Based on the 5 CPs estimated from the OUR respirogram of the tests, it can be concluded that respirometric tests normally experience the problems associated with initial lag, non-uniform seeding, and inadequate mixing.  相似文献   
115.
The adsorption of volatile organic compounds (VOCs), exemplified by benzene and methylethylketone (MEK), onto seven different types of activated carbon was investigated. Results show that for benzene adsorption the adsorption characteristic energy, enthalpy, free energy and entropy are in the range 17.12-36.86, -20.8 to -44.7, -11.89 to -16.22 kJ/mole and -29.4 to -85.3 J/mole/K, respectively. For the adsorption of MEK, the adsorption characteristic energy, enthalpy, free energy and entropy are in the range 14.47-32.34, -18.3 to -40.8, -10.78 to -15.56 kJ/mole and -24.8 to approximately -60.3 J/mole/K, respectively. The adsorption enthalpy can be calculated indirectly from statistical thermodynamic method and directly from the immersion enthalpy method. The adsorption characteristic energy is calculated by the Dubinin-Astokhov equation. The free energy is calculated by the measured equilibrium adsorption constant.  相似文献   
116.
The dechlorination of 2,4,6-trichlorophenol (TCP) in municipal sewage sludge with a chlorophenol (CP)-adapted consortium was investigated. Results show that dechlorination rates differed according to the source of the sludge samples used in the batch experiments. No significant differences in 2,4,6-TCP dechlorination were observed following treatment with inoculum at densities ranging from 10% to 50% (V/V), but a significant delay was noted at 5% (V/V) density. Overall, results show that the higher the 2,4,6-TCP concentration, the slower the dechlorination rate. The addition of acetate, lactate, pyruvate, vitamin B12 or manganese dioxide did not results in a significant change in 2,4,6-TCP dechlorination. Data collected from a bioreactor experiment revealed that pH 7.0 and a total solid concentration of 10 g/L were optimal for dechlorination. Dechlorination rates decreased significantly at higher agitation speeds. 2,4,6-TCP dechlorination was enhanced under methanogenic conditions, but it was inhibited under denitrifying and sulfate-reducing conditions.  相似文献   
117.
The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture.  相似文献   
118.
Huang JS  Chou HH  Chen CM  Chiang CM 《Chemosphere》2007,68(2):382-388
A laboratory study using a combined upflow anaerobic sludge bed (UASB)-activated sludge (AS) reactor system was undertaken to explore the effect of recycle-to-influent ratio (R(e)=1, 2, and 3) on the activities of nitrifiers and denitrifiers. Suspended-solids pre-settled piggery wastewater was used as the substrate-feed wastewater. At the R(e) of 1-3, the combined reactor system achieved efficient removal of COD (96-97%), TKN (100%) and total nitrogen TN (54-77%). Methanogenesis occurred with nearly-complete denitrification in the UASB reactor, whereas complete nitrification took place in the AS reactor. A higher R(e) (i.e., accompanied with a shorter solids retention time) resulted in a larger amount of high-activity denitrifiers and thereby achieved a higher TN removal efficiency. Compact granules and a high biomass concentration in the UASB reactor were observed. At the R(e) of 1-3, the maximum specific reaction rate of nitrifiers (0.45-0.49 NH(4)(+)-NmgVSS(-1)d(-1)) and the specific nitrification rates of mixed culture (0.18-0.22mg NH(4)(+)-NmgVSS(-1)d(-1)) in the AS reactor varied slightly; whereas the maximum specific reaction rate of denitrifiers (0.18-0.27mg NO(x)(-)-NmgVSS(-1)d(-1)) and the specific denitrification and COD removal rates of mixed culture (0.025-0.050mg NO(x)(-)-NmgVSS(-1)d(-1); 0.24-0.31mgCODmgVSS(-1)d(-1)) in the UASB reactor increased with increasing R(e). The primary finding of the study is that the combined UASB-AS reactor system should be operated at a higher R(e) to maintain high-activity denitrifiers to remove organic materials and nitrogen from piggery wastewater.  相似文献   
119.
Yuan C  Chiang TS 《Chemosphere》2007,67(8):1533-1542
An innovative remediation system of electrokinetic process coupled with permeable reaction barrier (PRB) was proposed for arsenic removal in soil matrix. Batch tests with PRB media of Fe(0) and FeOOH under potential gradient of 2 V cm(-1) for 5d duration were conducted to evaluate the removal mechanisms of arsenic. Arsenic enhancement of 1.6-2.2 times was achieved when a PRB system was installed in an electrokinetic system. A best performance was found in system with FeOOH layer located in the middle of elctrokinetic cell. This was largely because of higher surface area of FeOOH and the moving of HAsO(4)(2-) to the anode side by electromigration effect was inhibited by the electroosmosis flow. The surface characteristics of PRB media, which were qualified by SEM coupled with energy dispersive spectroscopy (EDS), were clearly confirmed that arsenic was found on the passive layer surface. Results indicated that the removal of As in EK/PRB systems was much more contributed by surface adsorption/precipitation on PRB media than by EK process. Furthermore among the electrical removal mechanisms, electromigration was predominant than electrosmotic flow. Surface adsorption and precipitation were respectively the principal removal mechanism under acid environment, e.g. near anode side, and under basic environment, e.g. near cathode side. The results reported in the present work will be beneficial to optimizing design of batch EK/PRB system and enlarging to the field scale system.  相似文献   
120.
Copper, zinc, and cerium oxide adsorbents supported on alumina were used to remove silane gas (SiH4). The adsorbents were prepared using a coprecipitation method and characterized by the inductively coupled plasma mass spectrometry, X-ray powder diffractometer, and Brunauer-Emmett-Teller method (BET). The silane removal efficiency and adsorption capacity of the adsorbents were investigated in this study. Test results showed that the adsorbents containing active species had a removal efficiency >99.9% for SiH4 before breakthrough. Adsorbents containing mixed oxides (CuO-CeO2/ Al2O3 and CuO-ZnO/Al2O3), which showed well-dispersed active species and high BET surface areas, had a greater adsorption capacity than the adsorbents containing single metal oxide. However, when the CuO-ZnO/ Al2O3 adsorbents contain >40 wt% of active metal oxides, the increase of active species lowered the BET surface area leading to a decrease of the adsorption capacity. Additionally, when the content of the active metal oxides was between 20% and 40%, the CuO-ZnO/Al2O3 adsorbents demonstrated higher adsorption capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号