首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31584篇
  免费   426篇
  国内免费   958篇
安全科学   995篇
废物处理   1192篇
环保管理   4176篇
综合类   5867篇
基础理论   8905篇
环境理论   21篇
污染及防治   8348篇
评价与监测   1819篇
社会与环境   1298篇
灾害及防治   347篇
  2022年   274篇
  2021年   280篇
  2020年   215篇
  2019年   282篇
  2018年   460篇
  2017年   480篇
  2016年   664篇
  2015年   628篇
  2014年   832篇
  2013年   2354篇
  2012年   1015篇
  2011年   1432篇
  2010年   1169篇
  2009年   1148篇
  2008年   1393篇
  2007年   1445篇
  2006年   1284篇
  2005年   1079篇
  2004年   1063篇
  2003年   1011篇
  2002年   995篇
  2001年   1294篇
  2000年   918篇
  1999年   627篇
  1998年   487篇
  1997年   491篇
  1996年   491篇
  1995年   531篇
  1994年   465篇
  1993年   428篇
  1992年   444篇
  1991年   397篇
  1990年   390篇
  1989年   414篇
  1988年   352篇
  1987年   301篇
  1986年   276篇
  1985年   305篇
  1984年   289篇
  1983年   321篇
  1982年   322篇
  1981年   273篇
  1980年   243篇
  1979年   269篇
  1978年   229篇
  1977年   195篇
  1976年   200篇
  1975年   192篇
  1974年   172篇
  1972年   198篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
921.
Predicting the soil-to-plant transfer of metals in the context of global warming has become a major issue for food safety. It requires a better understanding of how the temperature alters the bioavailability of metals in cultivated soils. This study focuses on one agricultural soil contaminated by Cd, Zn and Pb. DGT measurements were performed at 10, 20 and 30 °C to assess how the bioavailability of metals was affected by a rise in soil temperature. A lettuce crop was cultivated in the same conditions to determine if the soil-to-plant transfer of metals increased with a rise in soil temperature. A gradual decline in Cd and Zn bioavailability was observed from 10 to 30 °C, which was attributed to more intense complexation of metals in the pore water at higher temperatures. Together with its aromaticity, the affinity of dissolved organic matter (DOM) for metals was indeed suspected to increase with soil temperature. One main output of the present work is a model which satisfactorily explains the thermal-induced changes in the characteristics of DOM reported in Cornu et al. (Geoderma 162:65–70, 2011) by assuming that the mineralization of initial aliphatic compounds followed a first-order reaction, increased with soil temperature according to the Arrhenius law, and due to a priming effect, led to the appearance of aromatic molecules. The soil-to-plant transfer of Cd and Zn was promoted at higher soil temperatures despite a parallel decrease in Cd and Zn bioavailability. This suggests that plant processes affect the soil-to-plant transfer of Cd and Zn the most when the soil temperature rises.  相似文献   
922.
923.
This work focuses on the exposure of maize plants to nanomolar concentrations of Cd, which is relevant for agricultural soils cropped with food and feed plants. Maize plants were cultivated in nutrient solution at 0.8 or 20 nM Cd during the vegetative growth stages. No significant hormesis or toxic effects of Cd were observed on maize growth, but a decrease in the allocation of Cd to shoots between the 0.8 and 20 nM Cd exposures revealed that the plants already responded to these low concentrations of Cd according to a shoot Cd excluder strategy. The Cd, Cu and Zn concentrations in shoots decreased with time as the result of an early decrease in the root/shoot ratio and of a decrease in the coefficient of allocation to aboveground for Zn and Cd at 20 nM. As a consequence, shoots of young plants were richer in micronutrients Cu and Zn but also in toxic Cd. The rate of delivery of Cd, Cu and Zn from xylem sap was successfully used to predict the time course of concentrations of Cd, Cu and Zn in the shoot. However, it overestimated the actual concentrations of Cd in the shoot, presumably because the reallocation of this trace element from shoots back to roots was not taken into account.  相似文献   
924.
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.

Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.  相似文献   

925.
Observations are reported on (i) groundwater recharge rates under various types of vegetation as measured with megalysimeters in the dunes, (ii) freshwater lenses along the Dutch North Sea coast in the early 1900s, and (iii) rainwater lenses that develop on top of laterally migrating, artificially recharged riverwater. Subsequently analytical methods are presented to estimate annual natural groundwater recharge as function of rainfall and vegetation, and to calculate the size, shape and transition zone of freshwater lenses on saline groundwater and rainwater lenses on infiltrated riverwater. An empirical correction factor, based on the hydraulic resistance of an aquitard within the freshwater lens, is proposed to account for the frequently observed reduction of the Ghyben-Herzberg ratio of 40. This factor raises the groundwater table, reduces the depth of the fresh/salt interface and increases the lens formation time. The suite of methods offers a tool box for knowledge based water management of dune systems, by rapidly predicting: (i) more or less autonomous changes due to sealevel rise, climate change and vegetation development; and (ii) the potential (side) effects of interventions. Knowing what happened or will happen to the fresh water lens or a rainwater lens is important, because changes impact on important natural habitat parameters such as salinity, depth to groundwater table, decalcification rate (and thus on pH, Ca/Al, PO4, NH4) and nutrient availability, and on drinking water supply. The analytical models are applied to predict effects of sealevel rise, coastal progradation, vegetation changes, and increased temperature of coastal air and river water to be infiltrated.  相似文献   
926.
白肚燕,又名双色树燕,栖居于五大湖流域中27个双边共同关注区域(AOCs),从2010年到2014年对其进行了污染物暴露风险评估,以协助管理者和监管者评估五大湖AOCs的污染状况。本文比较了AOCs和附近非AOCs雏鸟体内污染物浓度的差异。AOCs白肚燕雏鸟尸体中多氯联苯(PCB)和多溴联苯醚的含量分别为30%和33%,低于非AOCs的平均浓度。AOCs白肚燕雏鸟胃含物中多环芳烃(PAH)浓度和血浆中全氟化合物浓度分别为67%和64%,也低于非AOCs的平均浓度。但是与已有生殖效应记载的高PCB污染区相比,有些AOCs雏鸟尸体内的PCBs浓度只是存在小幅升高。一些AOCs食物中PAHs的浓度足够高以致引起可测量的生理响应。在AOCs中,全氟化合物全氟辛烷磺酸在血浆中的最高浓度出现在Raisin河(密歇根州,美国;几何平均数330 ng/mL),但远低于预估毒性的参考值(1 700 ng/mL)。之前有研究报道雏鸟胃含物中PAH和PCB的浓度以及尸体中PCBs的含量与沉积物中污染物的含量显著相关,从而可加强白肚燕在评估沉积物污染生物有效性方面的应用。
精选自Thomas W. Custer, Christine M. Custer, Paul M. Dummer, Diana Goldberg, J. Christian Franson, Richard A. Erickson. Organic contamination in tree swallow (Tachycineta bicolor) nestlings at United States and binational Great Lakes areas of concern. Environmental Toxicology and Chemistry: Volume 36, Issue 3, pages 735–748, July 2017. DOI: 10.1002/etc.3598
详情请见http://onlinelibrary.wiley.com/wol1/doi/10.1002/etc.3598/full
  相似文献   
927.
Behavioral Ecology and Sociobiology - ᅟMales of fiddler crabs (genus: Uca) construct courtship structures using mud or sand to attract mate-searching females for underground mating. A sensory...  相似文献   
928.
为研究六六六(HCHs)和滴滴涕(DDTs)在太原市不同功能区土壤中的暴露格局、来源以及对周围人群的健康风险,在太原市化工区、灌区、矿区、生态区周边荒地土壤中进行采样,分析测定了土壤中HCHs和DDTs含量,根据太原市人群实际情况的暴露参数和USEPA的部分参数,对土壤HCHs和DDTs的健康风险进行评价。结果表明:1)太原市表层土壤中HCHs的平均含量大小依次为化工区>灌区>矿区>生态区;DDTs平均含量的大小依次为化工区>灌区>矿区>生态区,仅6%的HCHs和3%的DDTs和的平均残留水平均高于我国土壤质量标准一级标准,但均不超过二级标准值;2)土壤中HCHs残留主要源于历史上林丹的使用,DDTs残留则来源于历史和新污染源的共同影响;3)太原市表层土壤HCHs和DDTs致癌风险大小为化工园区>矿区>灌区>生态区。非致癌风险大小为化工区>矿区>灌区>生态区。3种暴露途径的在不同功能区的健康风险贡献率大小均为经口摄入>呼吸吸入>皮肤接触;综合来看太原市表层土壤中的HCHs和DDTs并未对人类造成非致癌风险,但有一定的致癌风险。本文的研究结果可为太原市土壤质量评价和环境污染防治提供科学指导,并对太原市人群的健康风险防治提供依据。  相似文献   
929.
In arid regions of the developing world, pastoralists and livestock commonly inhabit protected areas, resulting in human–wildlife conflict. Conflict is inextricably linked to the ecological processes shaping relationships between pastoralists and native herbivores and carnivores. To elucidate relationships underpinning human–wildlife conflict, we synthesized 15 years of ecological and ethnographic data from Ikh Nart Nature Reserve in Mongolia's Gobi steppe. The density of argali (Ovis ammon), the world's largest wild sheep, at Ikh Nart was among the highest in Mongolia, yet livestock were >90% of ungulate biomass and dogs >90% of large‐carnivore biomass. For argali, pastoral activities decreased food availability, increased mortality from dog predation, and potentially increased disease risk. Isotope analyses indicated that livestock accounted for >50% of the diet of the majority of gray wolves (Canis lupus) and up to 90% of diet in 25% of sampled wolves (n = 8). Livestock composed at least 96% of ungulate prey in the single wolf pack for which we collected species‐specific prey data. Interviews with pastoralists indicated that wolves annually killed 1–4% of Ikh Nart's livestock, and pastoralists killed wolves in retribution. Pastoralists reduced wolf survival by killing them, but their livestock were an abundant food source for wolves. Consequently, wolf density appeared to be largely decoupled from argali density, and pastoralists had indirect effects on argali that could be negative if pastoralists increased wolf density (apparent competition) or positive if pastoralists decreased wolf predation (apparent facilitation). Ikh Nart's argali population was stable despite these threats, but livestock are increasingly dominant numerically and functionally relative to argali. To support both native wildlife and pastoral livelihoods, we suggest training dogs to not kill argali, community insurance against livestock losses to wolves, reintroducing key native prey species to hotspots of human–wolf conflict, and developing incentives for pastoralists to reduce livestock density.  相似文献   
930.
Sweet potatoes are a staple in the diet of some people and an excellent source of minerals. Metal monitoring in food, like sweet potatoes, provides basic information on safety aspects in regulatory processes as well as nutritional values. One hundred five samples of three varieties of sweet potatoes were randomly obtained from supermarkets, farmers markets, and farmers' plots in Tenerife (Canary Islands, Spain). The edible portion (pulp) was the only part considered for analysis. Flame atomic absorption spectrometry was used to determine the contents of sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), while the levels of chromium (Cr), nickel (Ni), cadmium (Cd), and lead (Pb) were determined using graphite furnace atomic absorption spectrometry. The mean concentrations were 500 Na, 4409 K, 564 Ca, 609 Mg, 1.291 Cu, 6.554 Fe, 2.324 Mn, 2.348 Zn, 0.028 Cr, 0.048 Ni, 0.001 Cd, and 0.003 Pb mg/kg, respectively. Potassium presented the highest contents in all varieties of sweet potatoes. Iron was the most abundant microelement. The orange fleshed sweet potato variety offered greater nutritional contributions to the recommended intakes than the rest of the varieties studied. The estimated mean daily intake of Ni (0.72 mg/day) detected in our samples was highly consistent with other studies. Average daily intakes of Cd (0.015 μg/day) and Pb (0.045 μg/day) were below toxicological reference values. In conclusion, the levels of Cd and Pb detected in the sweet potatoes analyzed do not represent any toxicological risk to consumers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号