首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1180篇
  免费   8篇
  国内免费   30篇
安全科学   13篇
废物处理   61篇
环保管理   151篇
综合类   100篇
基础理论   198篇
污染及防治   421篇
评价与监测   211篇
社会与环境   61篇
灾害及防治   2篇
  2023年   36篇
  2022年   78篇
  2021年   62篇
  2020年   13篇
  2019年   30篇
  2018年   39篇
  2017年   34篇
  2016年   53篇
  2015年   27篇
  2014年   51篇
  2013年   152篇
  2012年   56篇
  2011年   63篇
  2010年   53篇
  2009年   47篇
  2008年   66篇
  2007年   43篇
  2006年   45篇
  2005年   35篇
  2004年   31篇
  2003年   29篇
  2002年   21篇
  2001年   17篇
  2000年   9篇
  1999年   10篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1993年   6篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1984年   2篇
  1982年   5篇
  1980年   2篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1974年   2篇
  1972年   3篇
  1969年   5篇
  1968年   4篇
  1965年   2篇
  1959年   2篇
  1957年   3篇
  1956年   2篇
排序方式: 共有1218条查询结果,搜索用时 468 毫秒
181.
This field study investigated the phytoremediation potential of two arsenic (As) hyperaccumulating fern species, Pityrogramma calomelanos var. austroamericana and Pteris vittata over 27-month duration at a disused As-contaminated cattle-dip site located at Wollongbar, NSW, Australia. Ferns planted in January 2009 were harvested following 10, 22 and 27 months of growth. A detailed soil sampling was undertaken in June 2009 (initial, n?=?42 per plot) and limited sampling in April 2011 (after 27 months, n?=?15 per plot) to measure total and phosphate-extractable As concentrations in soil at 0?-?20-, 20?-?40- and 40?-?60-cm depths. The choice of the limited number of samples was considered sufficient to estimate the changes in soil As concentration following phytoremediation based on a geostatistical model. The average frond dry biomass, As concentration and As uptake were significantly (P??0.05), respectively, by P. vittata. Our results show that phytoremediation time based on observed changes in soil As based on limited sampling is not reliable; hence, it is recommended that the frond As uptake should be considered in order to evaluate the phytoremediation efficiency of the two fern species at the experimental site. Using As uptake of the two fern species, we estimate that with P. calomelanos var. austroamericana it would take 55?-?125 years to decrease mean total As content below the ecological investigation level (20 mg kg(-1)) in the surface and subsurface soils, whereas with P. vittata 143?-?412 years would be required to achieve this target.  相似文献   
182.

Background, aim, and scope  

Zinc is an essential micronutrient element but its concentrations found in contaminated soils frequently exceed those required by the plant and soil organisms, and thus create danger to animal and human health. Phytoremediation is a technique, often employed in remediation of contaminated soils, which aims to remove heavy metals or other contaminants from soils or waters using plants. Arabidopsis (A.) halleri ssp. gemmifera is a plant recently found to be grown vigorously in heavy metal contaminated areas of Japan and it contained remarkably high amount of heavy metals in its shoots. However, the magnitude of Zn accumulation and tolerance in A. halleri ssp. gemmifera need to be investigated for its use as a phytoremediation plant.  相似文献   
183.
It is the first report in which a novel psychrotrophic Pseudomonas putida SKG-1 strain was evaluated for simultaneous bioremediation of pentachlorophenol and Cr6+ under various cultural and nutritional conditions. Pentachlorophenol (PCP) dechlorination products, bacterial structure, and functional groups were characterized by gas chromatography and mass spectrometry (GC–MS), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM–EDS), and Fourier-transform infrared (FTIR) techniques. The strain was extremely tolerant to excessively higher individual concentration of PCP (1,400 mg l?1) and Cr6+ (4,300 mg l?1). Increasing concentration of PCP and Cr6+ exerted inhibitory effect on bacterial growth and toxicants’ removal. The strain exhibited growth, and concomitantly remediated both the pollutants simultaneously over a broad pH (7.0–9.0) and temperature (28–32 °C) range; maximum growth, PCP dechlorination (87.5 %), and Cr6+ removal (80.0 %) occurred at optimum pH 8.0 and 30 °C (from initial PCP 100 mg l?1 and Cr6+ 500 mg l?1) under shaking (150 rpm) within 72 h incubation. Optimization of agitation (125 rpm) and aeration (0.4 vvm) in bioreactor further enhanced PCP dechlorination by ~10 % and Cr6+ removal by 2 %. A direct correlation existed between growth and bioremediation of both the toxicants. Among other heavy metals, mercury exerted maximum and cobalt minimum inhibitory effect on PCP dechlorination and Cr6+ removal. Chromate reductase activity was mainly associated with the supernatant and cytosolic fraction of bacterial cells. GC–MS analysis revealed the formation of tetrachloro-p-hydroquinone, 2,4,6-trichlorophenol, and 2,6-dichlorophenol as PCP dechlorination products. FTIR spectrometry indicated likely involvement of carbonyl and amide groups in Cr3+ adsorption, and SEM–EDS showed the presence of chromium on P. putida surface. Thus, our promising isolate can be ecofriendly employed for biotreatment of various industrial wastes contaminated with high PCP and Cr6+ concentrations.  相似文献   
184.
Health care waste includes all the waste generated by health care establishments, research facilities, and laboratories. This constitutes a variety of chemical substances, such as pharmaceuticals, radionuclides, solvents, and disinfectants. Recently, scientists and environmentalists have discovered that wastewater produced by hospitals possesses toxic properties due to various toxic chemicals and pharmaceuticals capable of causing environmental impacts and even lethal effects to organisms in aquatic ecosystems. Many of these compounds resist normal wastewater treatment and end up in surface waters. Besides aquatic organisms, humans can be exposed through drinking water produced from contaminated surface water. Indeed, some of the substances found in wastewaters are genotoxic and are suspected to be potential contributors to certain cancers. The aim of this study was to evaluate the genotoxic and cytotoxic potential of wastewaters from two hospitals and three clinical diagnostic centers located in Jaipur (Rajasthan State), India using the prokaryotic Salmonella mutagenicity assay (Ames assay) and the eukaryotic Saccharomyces cerevisiae respiration inhibition assay. In the Ames assay, untreated wastewaters from both of the health care sectors resulted in significantly increased numbers of revertant colonies up to 1,000–4,050 as measured by the Salmonella typhimurium TA98 and TA100 strains (with and without metabolic activation) after exposure to undiluted samples, which indicated the highly genotoxic nature of these wastewaters. Furthermore, both hospital and diagnostic samples were found to be highly cytotoxic. Effective concentrations at which 20 % (EC20) and 50 % (EC50) inhibition of the respiration rate of the cells occurred ranged between ~0.00 and 0.52 % and between 0.005 and 41.30 % (calculated with the help of the MS excel software XLSTAT 2012.1.01; Addinsoft), respectively, as determined by the S. cerevisiae assay. The results indicated that hospital wastewaters contain genotoxic and cytotoxic components. In addition, diagnostic centers also represent small but significant sources of genotoxic and cytotoxic wastes.  相似文献   
185.
Abstract

Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4 ‐ methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   
186.
Based on two comprehensive field studies conducted in California, background concentration (parts per trillion) of N2O (296.0 X 103), SF6 (0.16), CCI2F2 (180.8), CCI3F (103.8), CCI2FCCIF2 (16.3), CCI4 (114.2), CH3CI (952.9), CHCI3 (23.4), CH3I (2.4), CH3CCI3 (84.0), CCI2CCI2 (43.1), CHCICCI2 (14.5) and CH3Br (—) have been reported. These trace constituents were identified using retention data on eight GC columns, their electron attachment properties, and their EC thermal response. All but CHCICCI2 and CH3Br were measurable 100% of the time at both sites. Cryogenic procedures for SF6 ambient measurement were developed and successfully used. By an analysis of worldwide emissions of these trace constituents, their ambient levels, and their atmospheric lifetimes, it was possible to determine their origin (natural or anthropogenic). Our results indicate that 27% of organic chlorine contribution to the troposphere comes from fluorocarbons as opposed to a 73% contribution from the chloro-carbons. Further, the anthropogenic organic content in the troposphere was found to be about twice the natural content. Very high CHCI3 concentrations in onshore ocean waters were measured. Ambient data supporting the anthropogenic origin of CCI4 have been presented.  相似文献   
187.
Emergency plans for oxidant controls provide the basis for taking preventive action to protect public health. Historic oxidant data (1970 to Sept. 1974) from the South Coast Air Basin (SCAB), were evaluated to assess episode characteristics in an area where emergency strategies are most likely to be enforced. These findings, together with an objective study of a test case episode (June 1974) using a photochemical air quality simulation model, suggest that the currently conceived emergency plans for oxidant control are unlikely to be effective. It is concluded that, because of the chemical and mefeorofogfcal complexities of the episodes, they are extremely difficult both to predict and concurrently to control over their short-lived duration.  相似文献   
188.
Ju YR  Chen WY  Singh S  Liao CM 《Chemosphere》2011,85(6):1048-1056
The purpose of this paper was to examine trade-offs between elimination and detoxification in rainbow trout and three common bivalve molluscs (clam, oyster, and scallop) exposed to cadmium (Cd), copper (Cu), and zinc (Zn) based on recent reported experimental data. We incorporated metal influx threshold with subcellular partitioning to estimate rate constants of detoxification (kd) and elimination (k2). We found that the relationships between k2 and kd were negative for rainbow trout and positive for bivalve molluscs. However, the relationships between kd and % metal in metabolically detoxified pool were found positive for rainbow trout and negative for bivalve molluscs. Our results also indicated that rainbow trout had higher accumulation (∼60-90%) in metabolically active pool when exposed to essential metals of Cu and Zn and had only 10-50% accumulation in response to non-essential metal of Cd. Based on a cluster analysis, this study indicated that similarity of physiological regulations among study species was found between Cd and Zn. Our study suggested that detoxification can be predicted by an elimination-detoxification scheme with the known elimination rate constant. We concluded that quantification of trade-offs between subcellular partitioning and detoxification provides valuable insights into the ecotoxicology of aquatic organisms and enhances our understanding of the subcellular biology of trace metals.  相似文献   
189.
Controlled release formulations of β-cyfluthrin, a non-systemic, broad spectrum contact insecticide, have been prepared using laboratory synthesized poly(ethylene glycol) (PEG) based amphiphilic copolymers. Copolymers of polyethylene glycols of different molecular weights and various dimethyl esters, viz. dimethyl isophthalate, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of β-cyfluthrin from developed controlled release (CR) formulations were studied in comparison with that of the commercially available 025 SC. Release from the commercial formulation was faster than with the developed CR formulations. The rate of release of encapsulated β-cyfluthrin from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of β-cyfluthrin in water ranged from 0.427 to 0.622 in the tested formulations. The release was diffusion controlled with a half-release time (t(?)) of 3.92 to 7.9 days in water from different formulations, and the period of optimum availability (POA) of β-cyfluthrin ranged from 1.4 to 20.5 days. The results suggest that the application rate of β-cyfluthrin can be optimized to achieve insect control at the desired level and period.  相似文献   
190.

Purpose

??-Hexachlorocyclohexane (HCH), ??-HCH, and lindane (??-HCH) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and hence must be phased out and their wastes/stockpiles eliminated. At the last operating lindane manufacturing unit, we conducted a preliminary evaluation of HCH contamination levels in soil and water samples collected around the production area and the vicinity of a major dumpsite to inform the design of processes for an appropriate implementation of the Convention.

Methods

Soil and water samples on and around the production site and a major waste dumpsite were measured for HCH levels.

Results

All soil samples taken at the lindane production facility and dumpsite and in their vicinity were contaminated with an isomer pattern characteristic of HCH production waste. At the dumpsite surface samples contained up to 450?g?kg?1 ?? HCH suggesting that the waste HCH isomers were simply dumped at this location. Ground water in the vicinity and river water was found to be contaminated with 0.2 to 0.4?mg?l?1 of HCH waste isomers. The total quantity of deposited HCH wastes from the lindane production unit was estimated at between 36,000 and 54,000?t.

Conclusions

The contamination levels in ground and river water suggest significant run-off from the dumped HCH wastes and contamination of drinking water resources. The extent of dumping urgently needs to be assessed regarding the risks to human and ecosystem health. A plan for securing the waste isomers needs to be developed and implemented together with a plan for their final elimination. As part of the assessment, any polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) generated during HCH recycling operations need to be monitored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号