首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   9篇
安全科学   2篇
废物处理   1篇
环保管理   44篇
综合类   7篇
基础理论   44篇
污染及防治   13篇
评价与监测   2篇
社会与环境   5篇
  2023年   4篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   9篇
  2015年   13篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
81.
Discarded electronic devices (E-waste) have historically been found to exceed US Toxicity Characteristic hazardous waste thresholds for lead. Research was conducted to assess whether global and national lead reduction initiatives in the past decade translate to reduced toxicity characteristic leaching procedure (TCLP) lead leaching from E-waste. Nine categories of devices were subjected to TCLP and in all devices except one (smoke detectors), mean TCLP lead concentration results decreased by an order of magnitude or more (to levels below regulation thresholds). Mean TCLP lead concentrations decreased from 29.1 mg/L (2000–2005) to 0.224 mg/L (2008+) for cell phones and 1.26 mg/L (2000–2005) to 0.060 mg/L (2008+) for PCs. Most recently manufactured electronic devices (of those types tested here) comply with the definition of non-hazardous waste under US regulations.

Implications: Discarded electronic devices (E-waste) have often been tested as hazardous waste in the US because of lead leaching. Toxicity characteristic leaching procedure (TCLP) testing on more recently manufactured devices reveals that global lead reduction efforts have resulted in newer devices complying with US non-hazardous waste definitions. While these results highlight the success of lead reduction efforts, they raise policy questions regarding how best to incentivize E-waste recycling going forward.  相似文献   
82.
Renewable fuel production, particularly grain-based ethanol, is expanding rapidly in the USA. Although subsidized grain-based ethanol may provide a competitively priced transportation fuel, concerns exist about potential environmental impacts. This contribution focuses on potential water quality implications of expanded grain-based ethanol production and potential impacts of perennial-grass-based cellulosic ethanol. Expanded grain-based ethanol will increase and intensify corn production. Even with recommended fertilizer and land conservation measures, corn acreage can be a major source of N loss to water (20-40 kg ha(-1) yr(-1)). A greater acreage of corn is estimated to increase N and P loss to water by 37% (117 million kg) and 25% (9 million kg), respectively, and measures to encourage adoption of conservation practices are essential to mitigate water quality impairments. Dried distiller's grains remaining after ethanol production from corn grain are used as animal feed and can increase manure P content and may increase N content. Cellulosic fuel-stocks from perennials such as switchgrass and woody materials have the potential to produce ethanol. Although production, storage, and handling of cellulosic materials and conversion technology are limitations, accelerating development of cellulosic ethanol has the potential to reduce dependence on grain fuel-stocks and provide water quality and other environmental benefits. All alternative fuel production technologies could have environmental impacts. There is a need to understand these impacts to help guide policy and help make programmatic and scientific decisions that avoid or mitigate unintended environmental consequences of biofuel production.  相似文献   
83.
ABSTRACT: The National Weather Service River Forecast System (NWSRFS) is the new hydrologic prediction model for the National Weather Service (NWS) and provides guidance to meteorologists who issue NWS Flood Warnings to the public. The primary submodel within NWSRFS is the Sacramento Soil Moisture Accounting (SAC-SMA) model, which predicts surface runoff as a function of meteorological, geological, and soil data calibrated over a watershed. The research presented here focuses on a different approach to NWSRFS calibrations: greater utilization of geologic and soil data, in order to give the model better predictive capability. Geologic understanding can create better insights for the initial estimation and subsequent adjustment of SAC-SMA parameters. Fifteen calibrated Pacific Northwest drainages reveal a variety of hydrogeologic responses. For example, results for the Mount Rainier drainages show the complex interaction between active glaciers, impermeable volcanic surfaces, and glacial sedimentary valleys. Unweathered volcanic terrains show flashy peak flows, fast flow recessions, and low baseflow. Sedimentary terrains display subdued peak flows, slow flow recessions, and higher baseflow. Operational implementation of these calibrations at the NWS's Northwest River Forecast Center has yielded more accurate predictive results since 1995. NWS hydrologic forecasters nationwide could benefit from using drainage basin geologic characteristics in understanding and improving model calibrations and real time forecasts.  相似文献   
84.
ABSTRACT Bottom sediment in Hillsdale Lake, Kansas, was analyzed to estimate the annual load of total phosphorus deposited in the lake from nonpoint sources. Topographic, bathymetric, and sediment-core data were used to estimate the total mass of phosphorus in the lake-bottom sediment. Available streamflow and water-quality data were used to compute the mean annual mass of phosphorus (dissolved plus suspended) exiting the lake. The mean annual load of phosphorus added to the lake from point sources was estimated from previous studies. A simple mass balance then was used to compute the mean annual load of phosphorus from non-point sources. The total mass of phosphorus in the lake-bottom sediment was estimated to be 924,000 kg, with a mean annual load of 62,000 kg. The mean annual mass of phosphorus exiting in the lake outflow was estimated to be about 8,000 kg. The mean annual loads of phosphorus added to the lake from point and nonpoint sources were estimated to be 5,000 and 65,000 kg, respectively. Thus, the contribution to the total mean annual phosphorus load in Hillsdale Lake is about 7 percent from point sources and about 93 percent from nonpoint sources.  相似文献   
85.
Echelons provide an objective approach to prospecting for areas of potential concern in synoptic regional monitoring of a surface variable. Echelons can be regarded informally as stacked hill forms. The strategy is to identify regions of the surface which are elevated relative to surroundings (Relative ELEVATIONS or RELEVATIONS). These are areas which would continue to expand as islands with receding (virtual) floodwaters. Levels where islands would merge are critical elevations which delimit echelons in the vertical dimension. Families of echelons consist of surface sectors constituting separate islands for deeper waters that merge as water level declines. Pits which would hold water are disregarded in such a progression, but a complementary analysis of pits is obtained using the surface as a virtual mould to cast a counter-surface (bathymetric analysis). An echelon tree is a family tree of echelons with peaks as terminals and the lowest level as root. An echelon tree thus provides a dendrogram representation of surface topology which enables graph theoretic analysis and comparison of surface structures. Echelon top view maps show echelon cover sectors on the base plane. An echelon table summarizes characteristics of echelons as instances or cases of hill form surface structure. Determination of echelons requires only ordinal strength for the surface variable, and is thus appropriate for environmental indices as well as measurements. Since echelons are inherent in a surface rather than perceptual, they provide a basis for computer-intelligent understanding of surfaces. Echelons are given for broad-scale mammalian species richness in Pennsylvania.  相似文献   
86.
Functional traits and the growth-mortality trade-off in tropical trees   总被引:4,自引:0,他引:4  
A trade-off between growth and mortality rates characterizes tree species in closed canopy forests. This trade-off is maintained by inherent differences among species and spatial variation in light availability caused by canopy-opening disturbances. We evaluated conditions under which the trade-off is expressed and relationships with four key functional traits for 103 tree species from Barro Colorado Island, Panama. The trade-off is strongest for saplings for growth rates of the fastest growing individuals and mortality rates of the slowest growing individuals (r2 = 0.69), intermediate for saplings for average growth rates and overall mortality rates (r2 = 0.46), and much weaker for large trees (r2 < or = 0.10). This parallels likely levels of spatial variation in light availability, which is greatest for fast- vs. slow-growing saplings and least for large trees with foliage in the forest canopy. Inherent attributes of species contributing to the trade-off include abilities to disperse, acquire resources, grow rapidly, and tolerate shade and other stresses. There is growing interest in the possibility that functional traits might provide insight into such ecological differences and a growing consensus that seed mass (SM), leaf mass per area (LMA), wood density (WD), and maximum height (H(max)) are key traits among forest trees. Seed mass, LMA, WD, and H(max) are predicted to be small for light-demanding species with rapid growth and mortality and large for shade-tolerant species with slow growth and mortality. Six of these trait-demographic rate predictions were realized for saplings; however, with the exception of WD, the relationships were weak (r2 < 0.1 for three and r2 < 0.2 for five of the six remaining relationships). The four traits together explained 43-44% of interspecific variation in species positions on the growth-mortality trade-off; however, WD alone accounted for > 80% of the explained variation and, after WD was included, LMA and H(max) made insignificant contributions. Virtually the full range of values of SM, LMA, and H(max) occurred at all positions on the growth-mortality trade-off. Although WD provides a promising start, a successful trait-based ecology of tropical forest trees will require consideration of additional traits.  相似文献   
87.
Riparian Zone Management in the Pacific Northwest: Who's Cutting What?   总被引:2,自引:0,他引:2  
Oncorhynchus sp.), regional governments now restrict timber harvest in riparian forests. I summarize and assess the riparian zone management guidelines of the states of California, Oregon, and Washington (USA) and the province of British Columbia (Canada). Only Oregon and British Columbia protect fish-bearing streams with “no-harvest” zones, and only the wider (20–50 m) no-harvest zones for larger fish-bearing streams in British Columbia are likely to maintain near-natural linkages between riparian and stream ecosystems. All four jurisdictions protect most streams with “management zones” of variable width, in which timber harvest activities are restricted. All the management zone guidelines permit the harvest of the largest conifers from riparian forests and will, if applied over a series of timber harvest rotations (60–80 years), result in the continued removal of potential sources of large woody debris from the region's watersheds. All four jurisdictions require additional protection for streams and watersheds that are severely degraded or (in the United States) contain threatened or endangered species. The governments of the PNW have taken a “manage until degraded, then protect” approach to riparian forest management that is unlikely to maintain or restore the full suite of riparian-stream linkages necessary for lotic ecosystems to function naturally at the stream, watershed, basin, or regional scale.  相似文献   
88.
Random forests for classification in ecology   总被引:27,自引:0,他引:27  
Cutler DR  Edwards TC  Beard KH  Cutler A  Hess KT  Gibson J  Lawler JJ 《Ecology》2007,88(11):2783-2792
Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature.  相似文献   
89.
The knowledge produced by conservation scientists must be actionable in order to address urgent conservation challenges. To understand the process of creating actionable science, we interviewed 71 conservation scientists who had participated in 1 of 3 fellowship programs focused on training scientists to become agents of change. Using a grounded theory approach, we identified 16 activities that these researchers employed to make their scientific products more actionable. Some activities were more common than others and, arguably, more foundational. We organized these activities into 3 nested categories (motivations, strategies, and tactics). Using a co-occurrence matrix, we found that most activities were positively correlated. These correlations allowed us to identify 5 approaches, framed as profiles, to actionable science: the discloser, focused on open access; the educator, focused on science communication; the networker, focused on user needs and building relationships; the collaborator, focused on boundary spanning; and the pluralist, focused on knowledge coproduction resulting in valuable outcomes for all parties. These profiles build on one another in a hierarchy determined by their complexity and level of engagement, their potential to support actionable science, and their proximity to ideal coproduction with knowledge users. Our results provide clear guidance for conservation scientists to generate actionable science to address the global biodiversity conservation challenge.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号