首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30545篇
  免费   450篇
  国内免费   437篇
安全科学   1012篇
废物处理   1206篇
环保管理   4411篇
综合类   5539篇
基础理论   7817篇
环境理论   16篇
污染及防治   7659篇
评价与监测   1792篇
社会与环境   1754篇
灾害及防治   226篇
  2022年   252篇
  2021年   266篇
  2020年   266篇
  2019年   246篇
  2018年   432篇
  2017年   463篇
  2016年   669篇
  2015年   542篇
  2014年   740篇
  2013年   2499篇
  2012年   989篇
  2011年   1385篇
  2010年   1079篇
  2009年   1217篇
  2008年   1326篇
  2007年   1400篇
  2006年   1214篇
  2005年   1019篇
  2004年   1003篇
  2003年   972篇
  2002年   879篇
  2001年   1085篇
  2000年   839篇
  1999年   519篇
  1998年   389篇
  1997年   386篇
  1996年   401篇
  1995年   448篇
  1994年   385篇
  1993年   384篇
  1992年   361篇
  1991年   361篇
  1990年   354篇
  1989年   328篇
  1988年   282篇
  1987年   243篇
  1986年   285篇
  1985年   280篇
  1984年   314篇
  1983年   295篇
  1982年   302篇
  1981年   287篇
  1980年   256篇
  1979年   265篇
  1978年   185篇
  1977年   195篇
  1975年   158篇
  1974年   178篇
  1973年   161篇
  1972年   187篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
The measurement of hydrochloric acid (HCl) on a continuous basis in coal-fired plants is expected to become more important if HCl standards become implemented as part of the Federal Mercury and Air Toxics Standards (MATS) standards that are under consideration. For this study, the operational performance of three methods/instruments, including tunable diode laser absorption spectroscopy (TDLAS), cavity ring down spectroscopy (CRDS), and Fourier transform infrared (FTIR) spectroscopy, were evaluated over a range of real-world operating environments. Evaluations were done over an HCl concentration range of 0–25 ppmv and temperatures of 25, 100, and 185 °C. The average differences with respect to temperature were 3.0% for the TDL for values over 2.0 ppmv and 6.9% of all concentrations, 3.3% for the CRDS, and 4.5% for the FTIR. Interference tests for H2O, SO2, and CO, CO2, and NO for a range of concentrations typical of flue gases from coal-fired power plants did not show any strong interferences. The possible exception was an interference from H2O with the FTIR. The instrument average precision over the entire range was 4.4% for the TDL with better precision seen for concentrations levels of 2.0 ppmv and above, 2.5% for the CRDS, and 3.5% for the FTIR. The minimum detection limits were all on the order of 0.25 ppmv, or less, utilizing the TDL values with a 5-m path. Zero drift was found to be 1.48% for the TDL, 0.88% for the CRDS, and 1.28% for the FTIR.

Implications: This study provides an evaluation of the operational performance of three methods/instruments, including TDL absorption spectroscopy (TDLAS), cavity ring down spectroscopy (CRDS), and FTIR spectroscopy, for the measurement of hydrochloric acid (HCl) over a range of real-world operating environments. The results showed good instrument accuracy as a function of temperature and no strong interferences for flue gases typical to coal-fired power plants. The results show that these instruments would be viable for the measurement of HCl in coal-fired plants if HCl standards become implemented as part of the Federal Mercury and Air Toxics Standards (MATS) standards that are under consideration.  相似文献   

992.
The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through “Pre-Incident” response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test.Implications: Management of waste is a critical element of activities dealing with remediation of buildings and outdoor areas following a biological contamination incident. Waste management must be integrated into the overall remediation process, along with sampling, decontamination, resource management, and other important response elements, rather than being a stand-alone activity. The results presented in this paper will provide decision makers and emergency planners at the federal/state/tribal/local level information that can be used to integrate waste management into an overall systems approach to planning and response activities.  相似文献   
993.
Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants consisting of 209 congeners. Oxidation of several PCB congeners to hydroxylated PCBs (OH-PCBs) in whole poplar plants has been reported before. Moreover, 2,2′,3,5′,6-pentachlorobiphenyl (PCB95), as a chiral congener, has been previously shown to be atropselectively taken up and transformed in whole poplar plants. The objective of this study was to determine if PCB95 is atropselectively metabolized to OH-PCBs in whole poplar plants. Two hydroxylated PCB95s were detected by high-performance liquid chromatography-mass spectrometry in the roots of whole poplar plants exposed to racemic PCB95 for 30 days. The major metabolite was confirmed to be 4′-hydroxy-2,2′,3,5′,6-pentachlorobiphenyl (4′-OH-PCB95) by gas chromatography-mass spectrometry (GC-MS) using an authentic reference standard. Enantioselective analysis showed that 4′-OH-PCB95 was formed atropselectively, with the atropisomer eluting second on the Nucleodex β-PM column (E2-4′-OH-PCB95) being slightly more abundant in the roots of whole poplar plants. Therefore, PCB95 can at least be metabolized into 4′-OH-PCB95 and another unknown hydroxylated PCB95 (as a minor metabolite) in whole poplar plants. Both atropisomers of 4′-OH-PCB95 are formed, but E2-4′-OH-PCB95 has greater atropisomeric enrichment in the roots of whole poplar plants. A comparison with mammalian biotransformation studies indicates a distinctively different metabolite profile of OH-PCB95 metabolites in whole poplar plants. Our observations suggest that biotransformation of chiral PCBs to OH-PCBs by plants may represent an important source of enantiomerically enriched OH-PCBs in the environment.  相似文献   
994.
Spatial synchrony, defined as the correlated fluctuations in abundance of spatially separated populations, can be caused by regional fluctuations in natural and anthropogenic environmental population drivers. Investigations into the geography of synchrony can provide useful insight to inform conservation planning efforts by revealing regions of common population drivers and metapopulation extinction vulnerability. We examined the geography of spatial synchrony and decadal changes in these patterns for grassland birds in the United States and Canada, which are experiencing widespread and persistent population declines. We used Bayesian hierarchical models and over 50 years of abundance data from the North American Breeding Bird Survey to generate population indices within a 2° latitude by 2° longitude grid. We computed and mapped mean local spatial synchrony for each cell (mean detrended correlation of the index among neighboring cells), along with associated uncertainty, for 19 species in 2, 26-year periods, 1968–1993 and 1994–2019. Grassland birds were predicted to increase in spatial synchrony where agricultural intensification, climate change, or interactions between the 2 increased. We found no evidence of an overall increase in synchrony among grassland bird species. However, based on the geography of these changes, there was considerable spatial heterogeneity within species. Averaging across species, we identified clusters of increasing spatial synchrony in the Prairie Pothole and Shortgrass Prairie regions and a region of decreasing spatial synchrony in the eastern United States. Our approach has the potential to inform continental-scale conservation planning by adding an additional layer of relevant information to species status assessments and spatial prioritization of policy and management actions. Our work adds to a growing literature suggesting that global change may result in shifting patterns of spatial synchrony in population dynamics across taxa with broad implications for biodiversity conservation.  相似文献   
995.
Conventional wastewater treatments are not efficient in removing parabens, which may thus end up in surface waters, posing a threat to aquatic biota and hu  相似文献   
996.
We apply predictive weather metrics and land model sensitivities to improve the Colorado State University Water Irrigation Scheduler for Efficient Application (WISE). WISE is an irrigation decision aid that integrates environmental and user information for optimizing water use. Rainfall forecasts and verification performance metrics are used to estimate predictive rainfall probabilities that are used as input data within the irrigation decision aid. These input data errors are also used within a land model sensitivity study to diagnose important prognostic water movement behaviors for irrigation tool development purposes simultaneously performing the analysis in space and time. Thus, important questions such as “how long can a crop water application be delayed while maintaining crop yield production?” are addressed by evaluating crop growth stage interactions as a function of soil depth (i.e., space), rainfall events (i.e., time), and their probabilistic uncertainties. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
997.
Abstract

The presence of diethyl-phthalate (DEP), dibutyl-phthalate (DBP), butylbenzyl-phthalate (BBP), diethylhexyl-phthalate (DEHP) and diisononyl-phthalate (DINP) was determined in 295 tequila samples. They were grouped by age of maturation (white, aged, extra aged or ultra aged) and year of production (between 2013 and 2018). Gas Chromatography coupled with Mass Spectrometry was used for identification and quantification. The results showed that 65 samples (22% of the total) were phthalate free. DEP (0.13-0.27?mg/kg), BBP (0.05–2.91?mg/kg) and DINP (1.64–3.43?mg/kg) were detected in 11 (3.73%), 37 (12.54%) and 5 (1.69%) samples, respectively. But, these concentrations did not exceed the maximum permitted limits (MPL) of phthalates for alcoholic beverages. DBP (0.01–2.20?mg/kg) and DEHP (0.03–4.64?mg/kg) were detected in 96 (32.54%) and 224 (75.93%) samples, from them only 10 (3.39%) and 15 (5.08%) samples, respectively, exceeded the MPL for alcoholic beverages and they were few tequilas produced in the year 2014 or before. DEHP was the most frequent phthalate found in tequila and observed DEHP concentrations were 2-times higher in ultra aged tequilas compared to those in white tequilas. We concluded that all tequilas produced in 2015 and after, satisfied the international standards for these compounds.  相似文献   
998.
999.
Etoposide susceptibility to microbiological breakdown was studied in a batch biotransformation system, in the presence or absence of artificial wastewater containing nutrients, salts and activated sludge at two concentration levels. The primary focus of the present study was to study etoposide transformation products by ultra-high performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry (MS/MS). Data-dependent experiments combining full-scan MS data with product ion spectra were acquired to identify the molecular ions of etoposide transformation products, to propose the molecular formulae and to elucidate their chemical structures. Due to the complexity of the matrix, visual inspection of the chromatograms showed no clear differences between the controls and the treated samples. Therefore, the software package MZmine was used to facilitate the identification of the transformation products and speed up the data analysis. In total, we propose five transformation products; among them, four are described as etoposide transformation products for the first time. Even though the chemical structures of these new compounds cannot be confirmed due to the lack of standards, their molecular formulae can be used to target them in monitoring studies.  相似文献   
1000.
The growing industrial interest in adopting sustainability programmes has ushered in studies regarding sustainability indicators which have continually flourished in current literature. However, limited attention is given to the development of priority ranking, which is an important input for any adopting firm. This paper presents a hybrid multi-criteria approach in determining priority areas in sustainable manufacturing (SM). Using fuzzy analytic hierarchy process to address uncertainty in hierarchical decision-making, this paper determines SM priority strategies and eventually identifies even lower level strategies. The computed sustainable manufacturing index is presented at both the organizational and operational levels for a real case study of an industrial plastic manufacturing firm. This work provides a detailed and transparent hierarchical decision-making approach based on SM framework, the use of which could be valuable to practicing managers across industries in their pursuit of greater sustainability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号