首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   10篇
  国内免费   1篇
安全科学   6篇
废物处理   3篇
环保管理   25篇
综合类   2篇
基础理论   17篇
污染及防治   18篇
评价与监测   6篇
社会与环境   1篇
灾害及防治   3篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2013年   14篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
61.
ABSTRACT: Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged streams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the relationship between average discharge and drainage area in streams draining less than 200 acres was consistent with that of larger basins in the size range (> 10 square miles) typically gaged by the U.S. Geological Survey (USGS). This study was designed to evaluate predictors of average discharge in small ungaged streams for regulatory purposes, since many stream regulations, as well as recommendations for best management practices, are based on measures of stream size, including average discharge. The average discharge/drainage area relationship determined from gages on large streams held true down to the perennial flow initiation point. For the southern Appalachians, basin size corresponding to perennial flow is approximately 19 acres, ranging from 11 to 32 acres. There was a strong linear relationship (R2= 0.85) between average discharge and drainage area for all streams draining between 16 and 200 acres, and the average discharge for these streams was consistent with that predicted by the USGS Unit Area Runoff Map for Georgia. Drainage area was deemed an accurate predictor of average discharge, even in very small streams. Channel morphological features, such as active channel width, cross‐sectional area, and bankfull flow predicted from Manning's equation, were not accurate predictors of average discharge. Monthly baseflow statistics also were poor predictors of average discharge.  相似文献   
62.
ABSTRACT: Average-annual volumes of runoff, evapotranspiration, channel loss, upland (interchannel) recharge, and total recharge were estimated for watersheds of 53 channel sites in the Amargosa River basin above Shoshone, California. Estimates were based on a water-balance approach combining field techniques for determining streamflow with distributed-parameter simulation models to calculate transmission losses of ephemeral streamflow and upland recharge resulting from high-magnitude, low-frequency precipitation events. Application of the water-balance models to the Amargosa River basin, Nevada and California, including part of the Nevada Test Site, suggests that about 20.5 million cubic meters of water recharges the ground-water reservoir above Shoshone annually. About 1.6 percent of precipitation becomes recharge basinwide. About 90 percent of the recharge is by transmission loss in channels, and the remainder occurs when infrequent storms yield sufficient precipitation that soil water percolates beyond the rooting zone and reaches the zone of saturation from interchannel areas. Highest rates of recharge are in headwaters of the Amargosa River and Fortymile Wash; the least recharge occurs in areas of relatively low precipitation in the lowermost Amargosa River watershed.  相似文献   
63.
ABSTRACT: Significant errors in estimating surface runoff and erosion rates are possible if a watershed is assumed to contribute runoff uniformly over the entire area, when actually only a portion of the entire area may be contributing. Generation of overland flow on portions of small semiarid watersheds was analyzed by three methods: an average loss rate procedure, a lumped-linear model, and a distributed-nonlinear model. These methods suggested that, on the average, 45, 60, and 50% of the drainage area was contributing runoff at the watershed outlet. Infiltrometer data support the partial area concept and indicate that the low infiltration zones are the runoff source areas as simulated with the distributed-nonlinear model.  相似文献   
64.
We reviewed the scientific literature on non‐floodplain wetlands (NFWs), freshwater wetlands typically located distal to riparian and floodplain systems, to determine hydrological, physical, and chemical functioning and stream and river network connectivity. We assayed the literature for source, sink, lag, and transformation functions, as well as factors affecting connectivity. We determined NFWs are important landscape components, hydrologically, physically, and chemically affecting downstream aquatic systems. NFWs are hydrologic and chemical sources for other waters, hydrologically connecting across long distances and contributing compounds such as methylated mercury and dissolved organic matter. NFWs reduced flood peaks and maintained baseflows in stream and river networks through hydrologic lag and sink functions, and sequestered or assimilated substantial nutrient inputs through chemical sink and transformative functions. Landscape‐scale connectivity of NFWs affects water and material fluxes to downstream river networks, substantially modifying the characteristics and function of downstream waters. Many factors determine the effects of NFW hydrological, physical, and chemical functions on downstream systems, and additional research quantifying these factors and impacts is warranted. We conclude NFWs are hydrologically, chemically, and physically interconnected with stream and river networks though this connectivity varies in frequency, duration, magnitude, and timing.  相似文献   
65.
The body mass of Aurelia aurita ephyrae was better correlated with the diameter of the central disc than with the distance between opposite rhopaliae or distance between opposite lappet tips. Body dry weight (y, in μg) related to the disc diameter (x, in mm) through the equation y = 22.33 x 1.99. The exponent 1.99 was significantly lower than that for the medusa stage, indicating a tendency to grow in diameter rather than in weight through the ephyra stage. The average ash-free dry weight (AFDW) of ephyrae was 38.0% of the dry weight. The AFDW/diameter relationship was used to convert measured diameters to body AFDW and calculate succession in body mass, daily ration, daily growth rate and gross growth efficiency. Effects of temperature (6, 9.5, 12, 15 and 18 °C) and salinity (17.5, 22, 26, 30.5 and 35 PSU) on these parameters and feeding were studied at saturated prey concentration (222 Artemia nauplii l−1 initial concentration) by daily measurements over 10 d. There was a strong effect of temperature for total ingestion, growth rate, growth efficiency and final body mass of individual ephyrae, whereas the daily ration was not significantly different between the different temperatures. The experimental group kept at the highest temperature (18 °C) diverged the most, and ephyrae at this temperature ingested 2.7 times more and increased in weight 5.4 times more than at 6 °C. The average daily growth rate and gross growth efficiency of these ephyrae were 34.5% and 25.1%, respectively, significantly higher than at 6, 9.5 and 15 °C. Significant effects of salinity were shown for total ingestion, daily ration, daily growth rate and final weight, although only total ingestion and daily ration diverged sufficiently to show effects in a post-hoc test. This test showed that total ingestion was significantly different for all salinities except between 22 and 35 PSU and between 17.5 and 26 PSU. The daily ration for 35 PSU diverged from all other salinities, whereas none of the other salinities showed any significant differences. Thus, provided food in excess A. aurita can double its weight every 2 to 4 d, dependent on temperature and can therefore develop to the medusa stage in short time. Differences in environmental salinity in the range 17.5 to 35 PSU have little or no effect on growth rate and growth efficiency, whereas our results indicate that the full seawater salinity (35 PSU) causes significantly higher ingestion rate compared to lower salinities. Received: 11 January 1999 / Accepted: 11 May 1999  相似文献   
66.
An ambient air quality monitoring network has been establishedusing risk assessment techniques to evaluate adverse health effects from exposures to airborne contaminants. The risk assessment method was compared to traditional methods of establishing air quality monitoring networks: identifying maximumconcentration impacts or maximum total population. Results suggest that the health risk method best predicted the locationof adverse, non-carcinogenic respiratory illnesses during the evaluation period. Spearman Rank Correlation Coefficient, r s, values obtained using the risk assessment method werestatistically greater than the values obtained using theconcentration and population methods. The concentration methodwas the least accurate predictor of adverse effects.  相似文献   
67.
Communal nesting can help defray the high cost of endothermic heat production in cold environments, but such social behavior is generally thought to be incompatible with the persistent defense of exclusive territories in typically ‘asocial’ animals. We examined the propensity for communal nesting in female red squirrels (Tamiasciurus hudsonicus), which maintain individual year-round territories, through intensive monitoring of litters over 22 years and by radio-tracking females during 3 years in late winter/early spring. Communal nesting was exceptionally rare during lactation: of 1,381 litters tracked to emergence, we observed a single instance in which two closely related (r?=?0.5) females pooled their litters into a single nest. In contrast, nest sharing between 2–3 females was relatively common in the late winter/early spring, prior to mating; at least 12 of 63 females (19 %) engaged in communal nesting during a year of systematic tracking of radio-collared females from late February to April. Communal nesting occurred more frequently when temperatures were colder, suggesting that such aggregations might function to reduce thermoregulatory costs. These social associations were typically, though not exclusively, between closely related individuals (r?≥?0.25 for seven of eight cases; mother–daughter dyads: four of eight), suggesting this cooperative behavior might evolve through kin selection and/or may reflect extended parental care. Our results demonstrate that female red squirrels engage in communal nesting, typically with closely related kin, despite a dispersed population structure that stems from the persistent defense of individual territories.  相似文献   
68.
Histological and ultrastructural studies of free-swimming and attached larvae of Diplosoma listerianum Milne Edwards indicate that initial attachment is by means of papillae, which secrete an adhesive substance. The source of the adhesive is the central mass cells of the papilla. These cells secrete large electron-dense granules, and also a mass of reticular material. The granules give rise to the adhesive seen in sections and scanning electron micrographs of attached larvae, although the reticular material may also contribute to the adhesive. Histochemical tests show that protein is present in the granules, together with a small amount of carbohydrate. The reticular material contains sulphated acid mucopolysaccharide.  相似文献   
69.
Lee BK  Smith TJ  Garshick E  Natkin J  Reaser P  Lane K  Lee HK 《Chemosphere》2005,61(11):1677-1690
This study analyzed the workplace area concentrations and the personal exposure concentrations to fine particulate (PM2.5), elemental carbon (EC), and organic carbon (OC) measured during the winter period in trucking companies. The averaged personal exposure concentrations at breathing zones of workers are much greater than those of the microenvironment concentrations. The highest difference between the area (microenvironment) and personal exposure concentrations was in the PM2.5 concentrations followed by the OC concentrations. The area concentrations of PM2.5, EC, and OC at a large terminal were higher than those at a small one. The highest area concentrations of PM2.5, EC, and OC were observed in the shop areas followed by pick-up and delivery (P&D) areas. The area concentrations and personal exposure to PM2.5, EC, and OC in the shop and P&D areas which are highly affected by diesel engine exhaust emissions were much higher than those in the docks which are significantly affected by liquefied petroleum gas (LPG) engine exhaust emissions. The highest EC fraction to the total carbon (EC + OC) concentrations was observed in the shops, while the lowest one was identified in the offices. The personal exposure of the smoking workers to PM2.5 and OC was much higher than that of the non-smoking workers. However, the smoking might not significantly contribute to the personal exposure to EC. There were significant correlations between the PM2.5 and OC concentrations in both the area and personal exposure concentrations. However, significant correlations between the PM2.5 and EC concentrations and between the OC and EC concentrations were not identified.  相似文献   
70.
Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号