首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   3篇
  国内免费   1篇
废物处理   6篇
环保管理   26篇
综合类   7篇
基础理论   41篇
污染及防治   43篇
评价与监测   38篇
社会与环境   7篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   7篇
  2013年   20篇
  2012年   9篇
  2011年   13篇
  2010年   11篇
  2009年   10篇
  2008年   16篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
51.
Integrated rice–fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice–fish, fish–fingerlings, fruits, vegetables, rice–fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice–fish refuge followed by rice–fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice–fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice–fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish–fingerlings enterprise, respectively.  相似文献   
52.
The present study was aimed to make an assessment of health risk due to pollution and human pathogenic bacteria associated with the recreational and drinking water sources in twin densely populated holy Indian cities Ayodhya and Faizabad. Though physicochemical studies revealed that the water available in the area is under recommended limits for human use, it is unsafe on account of poor microbiological quality of surface and ground water in the region. The most probable number (MPN) test results revealed the preponderance of ≥2,400 total coliforms (TC) (100 ml) − 1 in river, pond, dug well and kund waters. Contrary to that, 94% tube wells, 32% hand pumps and 25% piped supply water were under safe limits having <3 TC (100 ml) − 1. The shallow depth (~40 ft), water logging and presence of septic tanks in the near vicinity are the possible reasons of poor microbial quality of hand pump drinking water. The municipal supply water passes along sewage line where loose connections and/or cracks in pipe lead to mixing and contamination. The significant best quality of tube well water evident from the absence of TC could be attributed to the depth of well ≥150 ft and usually their location away from the habitation. A total of 263 bacteria from 186 water samples were isolated, and at least five genera of enteric bacteria from various water sources were identified morphologically and biochemically as Escherichia coli, Klebsiella sp., Enterobacter sp., Shigella sp. and Salmonella sp. The serotyping of 72 E. coli and 36 Salmonella sp. revealed 51 as E. coli O157 and 20 as Salmonella sp. The presence of enteric pathogens in water sources pose threat to human health and therefore call for immediate remedial measures.  相似文献   
53.
Surface ozone is mainly produced by photochemical reactions involving various anthropogenic pollutants, whose emissions are increasing rapidly in India due to fast-growing anthropogenic activities. This study estimates the losses of wheat and rice crop yields using surface ozone observations from a group of 17 sites, for the first time, covering different parts of India. We used the mean ozone for 7 h during the day (M7) and accumulated ozone over a threshold of 40 ppbv (AOT40) metrics for the calculation of crop losses for the northern, eastern, western and southern regions of India. Our estimates show the highest annual loss of wheat (about 9 million ton) in the northern India, one of the most polluted regions in India, and that of rice (about 2.6 million ton) in the eastern region. The total all India annual loss of 4.0–14.2 million ton (4.2–15.0%) for wheat and 0.3–6.7 million ton (0.3–6.3%) for rice are estimated. The results show lower crop loss for rice than that of wheat mainly due to lower surface ozone levels during the cropping season after the Indian summer monsoon. These estimates based on a network of observation sites show lower losses than earlier estimates based on limited observations and much lower losses compared to global model estimates. However, these losses are slightly higher compared to a regional model estimate. Further, the results show large differences in the loss rates of both the two crops using the M7 and AOT40 metrics. This study also confirms that AOT40 cannot be fit with a linear relation over the Indian region and suggests for the need of new metrics that are based on factors suitable for this region.  相似文献   
54.
Environmental Science and Pollution Research - A simple oxidation method for preparing CuO nanodisks on a flexible Cu sheet is presented. The crystal structure of as-prepared CuO nanodisks was...  相似文献   
55.
The influence of anthropogenic loading on the distribution of soft bottom benthic organisms of a tropical estuary (Cochin backwaters) was examined. The industrial activities were found to be high in the northern and central part of the estuary, where dissolved inorganic nitrogen (DIN > 210 ??M) and phosphorus (DIP > 6.5 ??M) have caused high abundance of chlorophyll a (up to 73 mg m???3) and accumulation of organic carbon in sediments (up to 5%). Principal component analysis distinguished three zones in the estuary. The central zone (Z1) was characterized by organic enrichment, low species diversity, and increased number of pollution tolerant species. Long-term deterioration of the estuary is indicated by an increase in the nutrients and chlorophyll a levels by sixfold during the last few decades. Flow restrictions in the lower estuary have lead to a fourfold increase in sediment organic carbon over the period of three decades. The reduced benthic diversity followed by an invasion of opportunistic polychaetes (Capitella capitata), are indicative of a stress in the estuary.  相似文献   
56.
Environmental Science and Pollution Research - Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement...  相似文献   
57.
In this study, the effect of silicon (Si) addition on cadmium (Cd) toxicity in rice seedlings was investigated. After a series of screening experiments, 50 μmol·L?1 of Cd and 10 μ mol·L?1 of Si were selected. Treatment of rice seedlings with Cd (50 μ mol·L?1) resulted in significant accumulation of this metal in roots and shoots. The data revealed that accumulation of Cd resulted in oxidative stress in rice seedlings as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA; a peroxidation product of lipids). However, addition of Si (10 μ mol·L?1) together with Cd prevented accumulation of Cd, H2O2 and MDA. Antioxidant capacity was decreased by Cd but enhanced by Si addition. Cd decreased the length and frequency of root hairs, stomatal frequency, and distorted leaf mesophyll cells and vascular bundles. However, addition of Si together with Cd reduced these abnormalities. The results showed that addition of exogenous Si protected rice seedlings against Cd toxicity by preventing Cd accumulation and oxidative stress (H2O2 and MDA accumulation) by increasing Si accumulation and antioxidant capacity, which maintained the structure and integrity of leaf and root.  相似文献   
58.
Seeds of two rice cultivars (Oryza sativa) cv. PR-116 and Pant Dhan-12 subjected to heavy metal lead (Pb2+) and mercury (Hg2+) exposure showed an inhibition in germination percentage, shoot and root length, and lower fresh and dry weight after 7 days. Both Pb2+ and Hg2+ inhibited the solubilization process of starch due to reduction in α-amylase activity, which is also evident from greater starch content and reduced soluble carbohydrate content of endosperms of treated seeds of the two cultivars. Mercury was more tolerated by Pant Dhan-12 when grown under in vitro culture medium containing 2% sucrose. The inhibitory effect of Pb2+ on embryo growth was not only abolished but also accelerated by 2% sucrose. The inhibitory effect, however, was not significantly blocked in Hg2+-treated embryos grown in vitro in sucrose containing medium. Embryos did not grow normally in a medium devoid of sucrose in either case. Data indicated that Pb2+ inhibited germination and seedling growth by impairing the solubilization of endosperm starch without markedly affecting the embryo, while Hg2+ inhibited germination and seedling growth by damaging the embryo itself.  相似文献   
59.
This study attempted to determine the effects of heavy metals on the photosynthetic blue-green algae for their potential to use as a biosensor. The bioaccumulation of metals and its effects on pigments of Nostoc muscorum and Synechococcus PCC 7942 were assessed. The culture was grown in BG 11 liquid medium supplied with different metals like mercury (Hg), lead (Pb), and cadmium (Cd) and incubated (µM 20 concentrations) for 10 days under optimal conditions. The accumulated amounts of metals were determined by atomic absorption spectroscopy (AAS). The stress effects on photosynthetic pigment chlorophyll a (Chl a) were monitored by laser-induced fluorescence (LIF). Bio-concentration factor (BCF) reached a peak in cells on the 2nd day of incubation followed by a gradual reduction. The highest reduction in the pigment concentrations (Chl a and β carotene) was observed at 20?µM?L?1 Hg treatment. The results indicate that, cyanobacteria may serve as both potential species to be used as a biosensor and used to clean up heavy metals from contaminated water. These changes were analyzed with the long-term goal of exploiting cyanobacterial cells as biosensors.  相似文献   
60.
Biomonitoring of vehicle-derived particulates is conducted by taking magnetic measurements of roadside tree leaves. Remanent magnetization (IRM300 mT) of more than 400 Delbergia sissoo leaves was determined and IRM300 mT normalized for the leaf area. The normalized 2-D magnetization as shown by results is dominantly controlled by the tree's distance to the road. The spatial and temporal variations of vehicle-derived particulates were mapped using magnetic analysis. 2D-magnetizations values were higher for leaves collected adjacent to major road sections than for those from village road suggesting vehicle emissions, rather than resuspended road dust, as the major cause of magnetic particles of roadside tree leaves. Vehicles derived particulates are responsible for tree leaf magnetism, and the leaf magnetizations values fall significantly from high values proximal to the roadside to lower values at the distal side. This suggests the ability of trees to reduce particulates concentrations in the atmosphere. The rainfall produces a net decrease in the leaf magnetic dust loadings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号