首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1911篇
  免费   52篇
  国内免费   20篇
安全科学   129篇
废物处理   82篇
环保管理   445篇
综合类   209篇
基础理论   491篇
环境理论   2篇
污染及防治   387篇
评价与监测   124篇
社会与环境   82篇
灾害及防治   32篇
  2023年   15篇
  2022年   24篇
  2021年   22篇
  2020年   26篇
  2019年   24篇
  2018年   47篇
  2017年   62篇
  2016年   67篇
  2015年   64篇
  2014年   60篇
  2013年   131篇
  2012年   86篇
  2011年   155篇
  2010年   100篇
  2009年   90篇
  2008年   119篇
  2007年   125篇
  2006年   122篇
  2005年   73篇
  2004年   72篇
  2003年   71篇
  2002年   59篇
  2001年   40篇
  2000年   28篇
  1999年   30篇
  1998年   28篇
  1997年   15篇
  1996年   25篇
  1995年   16篇
  1994年   20篇
  1993年   17篇
  1992年   17篇
  1991年   9篇
  1990年   11篇
  1989年   5篇
  1988年   10篇
  1987年   15篇
  1986年   9篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1969年   3篇
  1937年   2篇
  1936年   2篇
  1935年   3篇
  1926年   2篇
排序方式: 共有1983条查询结果,搜索用时 15 毫秒
81.
Stakeholder analysis means many things to different people. Various methods and approaches have been developed in different fields for different purposes, leading to confusion over the concept and practice of stakeholder analysis. This paper asks how and why stakeholder analysis should be conducted for participatory natural resource management research. This is achieved by reviewing the development of stakeholder analysis in business management, development and natural resource management. The normative and instrumental theoretical basis for stakeholder analysis is discussed, and a stakeholder analysis typology is proposed. This consists of methods for: i) identifying stakeholders; ii) differentiating between and categorising stakeholders; and iii) investigating relationships between stakeholders. The range of methods that can be used to carry out each type of analysis is reviewed. These methods and approaches are then illustrated through a series of case studies funded through the Rural Economy and Land Use (RELU) programme. These case studies show the wide range of participatory and non-participatory methods that can be used, and discuss some of the challenges and limitations of existing methods for stakeholder analysis. The case studies also propose new tools and combinations of methods that can more effectively identify and categorise stakeholders and help understand their inter-relationships.  相似文献   
82.
Typical top-down regional assessments of CO2 storage feasibility are sufficient for determining the maximum volumetric capacity of deep saline aquifers. However, they do not reflect the regional economic feasibility of storage. This is controlled, in part, by the number and type of injection wells that are necessary to achieve regional CO2 storage goals. In contrast, the geomechanics-based assessment workflow that we present in this paper follows a bottom-up approach for evaluating regional deep saline aquifer CO2 storage feasibility. The CO2 storage capacity of an aquifer is a function of its porous volume as well as its CO2 injectivity. For a saline aquifer to be considered feasible in this assessment it must be able to store a specified amount of CO2 at a reasonable cost per ton of CO2. The proposed assessment workflow has seven steps that include (1) defining the storage project and goals, (2) characterizing the geology and developing a geomechanical model of the aquifer, (3) constructing 3D aquifer models, (4) simulating CO2 injection, (5,6) evaluating CO2 injection and storage feasibility (with and without injection well stimulation), and (7) determining whether it is economically feasible to proceed with the storage project. The workflow was applied to a case study of the Rose Run sandstone aquifer in the Eastern Ohio River Valley, USA. We found that it is feasible in this region to inject 113 Mt CO2/year for 30 years at an associated well cost of less than US $1.31/t CO2, but only if injectivity enhancement techniques such as hydraulic fracturing and injection induced micro-seismicity are implemented.  相似文献   
83.
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds.  相似文献   
84.
It is common practice to repeatedly apply dairy manure to the same fields. To accurately assess the total plant availability of manure nutrients, it is necessary to account for the nutrients remaining in soil from previous manure applications. A field experiment studying manure nitrogen (N) uptake by corn (Zea mays L.) was conducted from 1998 to 2003 on a Plano silt loam (fine-silty, mixed, mesic, Typic Argiudolls). Plots received two rates of semisolid manure either every year, every 2 yr, or every 3 yr to estimate first-, second-, and third-year dairy manure N residuals. Residual manure N availability was estimated from single and multiple manure applications using (i) the fertilizer N equivalence method, (ii) the apparent recovery (difference) method, (iii) relative effectiveness method, and (iv) recovery of (15)N-labeled manure. Second-year availabilities after a single manure application using the fertilizer equivalence, difference, and relative effectiveness methods were estimated to be 12, 8, and 4% of total manure N applications, respectively. Estimates of third-year availability by these methods were 3, 1, and 5%, respectively. Measurement of (15)N recovered from labeled manure was 6 and 2% in the second and third year, respectively. Fertilizer equivalence, difference, and relative effectiveness methods showed great year to year variability, reducing the confidence in the residual manure N availability estimates by these methods, but using (15)N-labeled manures reduced variability substantially. Based on this and other studies, we suggest that second- and third-year residual N availability from a single application of semisolid dairy manure would be 9 to 12%, and 3 to 5% of the original manure N application, respectively.  相似文献   
85.
Consumption of microbially contaminated ground water can cause adverse health effects and the processes involved in pathogen transport in aquifers need to be understood. The influences of distance, flow velocity, and colloid size on colloid transport were examined in homogenous pea-gravel media using an 8-m column and three sizes (1, 5, and 10 microm) of microspheres. Experiments were conducted at three flow rates by simultaneously injecting microspheres with a conservative tracer, bromide. Observed concentrations were simulated with CXTFIT and analyzed with filtration theory. The results demonstrate that colloid concentration is strongly log-linearly related to transport distance (as suggested by filtration theory) in coarse gravels, similar to our previous field studies. In contrast, the log-linear relationship is often reported to be invalid in fine porous media. The observed log-linear relationship is possibly because straining is negligible in the coarse gravels investigated. This has implications in predicting setback distances for land disposal of effluent, and suggests that setback distances in gravel aquifers can be estimated using constant spatial removal rates (f). There was an inverse relationship between transport distance and colloidal concentration, but not with temporal attachment rate (katt) and collision coefficient (alpha). Increases in flow velocity result in increasing colloidal recovery, katt and alpha but decreasing f. Increases in sphere size result in decreasing colloidal recovery with increasing katt, f, alpha, and velocity enhancement. Diffusion is the dominant collision mechanism for 1-microm spheres (81-88%), while settling dominates for 5- and 10-microm spheres (> 87%), and interception is very small for all spheres investigated.  相似文献   
86.
ABSTRACT: Churchill County, Nevada, has approximately 23,000 residents, among whom an estimated 13,500 relied on private wells for water supply in 2002. This study examined exposure to arsenic in water supplies among residents with private domestic wells and factors related to householder choice to consume tap water. It compared opinions and concerns about water quality with consumption habits and observed concentrations from tap water samples. The results from 351 households indicated that a majority (75 percent) of respondents consumed tap water and that a minority (38 percent) applied treatment. Approximately 66 percent of those who consumed tap water were exposed to concentrations of arsenic that exceeded 10 ppb. Water consumption was related to application of treatment. Among 98 respondents who were not at all concerned about the health effects of aqueous arsenic, 59 (60 percent) reported consuming tap water with concentrations of arsenic exceeding 10 ppb. Conversely, among 86 respondents who were highly concerned about arsenic, 33 (37 percent) consumed tap water with concentrations of arsenic exceeding 10 ppb. Results from a national sampling effort showed that 620 of 5,304 private wells sampled (11.7 percent) had arsenic concentrations above 10 ppb. The paradox of awareness of arsenic in water supplies coupled with consumption of aqueous arsenic in concentrations greater than 10 ppb may be common in other parts of the nation. Enhanced educational efforts, especially related to tap water sampling and explanations of efficacy of available treatment, may be useful means of reducing exposure through private water supplies.  相似文献   
87.
ABSTRACT

To test the possible use of composted food waste and wastewater sludge as biofilters to treat gas-phase volatile organic compounds (VOCs), batch experiments were conducted with an isolated strain that could degrade aromatic compounds under aerobic conditions. A benzene and trichloroethylene (TCE) mixture was used as the gas-phase pollutant in experiments with composted food waste, sludge, and soil. Under aerobic conditions, benzene was degraded as a primary substrate and TCE was degraded cometabolically, with water contents varying from 6 to 60% (volume of water added/volume of solid). Optimal water content for VOC removal was 12% for the soil, 36% for the composted food waste, and 48% for the sludge.

The extent of VOC sorption and biodegradation at the optimal water content was different for each material. With the same initial VOC concentration, more VOCs were removed by sorption onto the composted food waste and the sludge, while less VOCs were biodegraded in comparison with the results using soil. The reason the biodegradation in the soil was greater may be partly attributed to the fact that, due to less sorption, the aqueous-phase concentration of VOCs, which microorganisms could utilize as a carbon source or cometabolize, was higher. We also speculate that the distribution of microorganisms in each medium affects the rate of biodegradation. A large number of microorganisms were attached to the composted food waste and sludge. Mass transfer of VOCs and oxygen to these microorganisms, which appear to have been heterogeneously distributed in clusters, may have been limited, resulting in hindered biodegradation.  相似文献   
88.
ABSTRACT

Dalton's law of partial pressures and the hypothesis that water vapor equilibrium in a canister is identical to that established above liquid water are used to predict the variation of the percent relative humidity (%RH) of air released from canisters used in ambient air sampling, typically 6-L canisters pressurized with 18 L of air. When (and if) the water vapor partial pressure in a canister exceeds its saturation vapor pressure, water vapor condensation begins and the condensation rate equals the sampling rate of water vapor into the canister. Under constant temperature conditions, the air subsequently released from the canister is less humid than the original sample, following the relationship %RH = 100% (6 L/Vs) for Vs> Vr, where Vs is the residual air volume (referenced to atmospheric pressure), and Vr is shown to depend on the %RH of the ambient air sample. Vr is the residual air volume at which water is completely removed (except for adsorbed water vapor) from the canister wall. For Vs < Vr, the predicted %RH is constant and equal to its value at Vr. Experimental values agree reasonably well with predictions at both high (90%) and low (34%) RH. However, experimental values are often slightly displaced (usually towards lower values of %RH) for mid-range %RH (61%) and variations in %RH near Vr change from canister to canister.  相似文献   
89.
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.  相似文献   
90.
ABSTRACT: Certain physical and chemical properties of soil vary with soil water content. The relationship between these properties and water content is complex and involves both the pore structure and constituents of the soil solution. One of the most economical techniques to quantify soil water content involves the measurement of electrical resistance of a dielectric medium that is in equilibrium with the soil water content. The objective of this research was to test the reliability and accuracy of fiberglass soil-moisture electrical resistance sensors (ERS) as compared to gravimetric sampling and Time Domain Reflectometry (TDR). The response of the ERS was compared to gravimetric measurements at eight locations on the USDA-ABS Walnut Gulch Experimental Watershed. The comparisons with TDR sensors were made at three additional locations on the same watershed. The high soil rock content (≥45 percent) at seven locations resulted in consistent overestimation of soil water content by the ERS method. Where rock content was less than 10 percent, estimation of soil water was within 5 percent of the gravimetric soil water content. New methodology to calibrate the ERS sensors for rocky soils will need to be developed before soil water content values can be determined with these sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号